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Introduction
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Who are we?

• Paige Randall North

• Wouter Swierstra
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Who are you?

• This is an elective, so:

• Why did you choose this course?

• What do you hope to learn?
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Course structure
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Topics

• Lambda calculus, lazy & strict

• Algebraic datatypes & generic programming

• Design patterns and common abstractions

• Type-level programming

• Lambda calculus & laziness

• Programming and proving with dependent types

• ….
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Languages of choice

• Haskell – first half (Wouter)

• Agda – second half (Paige)
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Prerequisites

• Familiarity with Haskell and GHC

(course: “Functional Programming”)

• Familiarity with higher-order functions and folds (optional)

(course: “Languages and Compilers”)

• Familiarity with type systems and semantics (optional)

(course: “Concepts of program design”)
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Goals

At the end of the course, you should be:

• able to use a wide range of Haskell tools and libraries,

• know how to structure and write large programs,

• proficient in the theoretical underpinnings of FP, i.e. familiar with lambda calculus and type

systems,

• able to understand formal texts and research papers on FP language concepts,

• familiar with current FP research
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Course homepage & Teams

https://ics.uu.nl/docs/vakken/afp/

Feel free to let us know if you find any broken links, missing slides, etc.

You should all be a member of the ‘AFP 2023-2024’ Team. We’ll use that for announcements, etc.
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Sessions

Lectures:

• Monday, 11:00–12:45

• Wednesday, 11:00–12:45

Participation in all lectures is expected (and you’ll get much more out of the course!)
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Course components

Four components:

• Exam (50%)

• Weekly assignments (20%)

• Programming project (20%)

• Active Participation (10%)
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Lectures and exam

• Lectures usually have a specific topic

• Often based on one or more research papers

• The exam will be about the topics covered in the lectures and the papers

• In the exam, you will be allowed to consult a one page (hand written) summary of the

lectures and the research papers we have discussed
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Assignments

• Team size: 1 person

• Weekly assignments, containing both practical and theoretical questions

• Theoretical assignments may serve as an indicator for the kind of questions asked in the

exam

• Use all options for help

• Peer & self review & advisory grading of assignments

• Reviewing other people’s code is an excellent way to learn!

• Every week you’ll be given two assignments to review

15



Project

• Team size: 3 people

• Develop a realistic library or application in Haskell

• Use concepts and techniques from the course

• Again, style counts. Use version control, test your code. Try to write simple and concise code.

Write documentation

• Grading: difficulty, the code, amount of supervision required, final presentation, report
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Software installation

A recent version of GHC, which you can get via:

• ghcup: https://www.haskell.org/ghcup/

• stack: https://docs.haskellstack.org/en/stable/install_and_upgrade/

• or your system package manager

Please use git & GitHub or our local GitLab installation
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Course structure

• Basics and fundamentals

• Patterns and libraries

• Language and types

There is some overlap between the blocks/courses
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Basics and fundamentals

Everything you need to know about developing Haskell projects

• Debugging and testing

• Simple programming techniques

• (Typed) lambda calculus

• Evaluation and profiling

Knowledge you are expected to apply in the programming task
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Some suggested reading

• Fun of Programming edited by Jeremy Gibbons and Oege de Moor

• Parallel and concurrent programming in Haskell by Simon Marlow

• Purely Functional Data Structures by Chris Okasaki

• Real World Haskell by Bryan O’Sullivan, Don Stewart, and John Goerzen

• Haskell in Depth by Vitaly Bragilevsky

• Effective Haskell by Rebecca Skinner

• Types and Programming Languages by Benjamin Pierce
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Programming style
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Warnings

• Turn on warnings with -Wall (and listen to the suggestions)

• Add :set -Wall to ~/.ghc/ghci.conf
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Never use TABs

• Haskell uses layout to delimit language constructs

• Haskell interprets TABs to have 8 spaces

• Editors often display them with a different (user-configurable) width

• TABs lead to layout-related errors that are difficult to debug

• Even worse: mixing TABs with spaces to indent a line
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Never use TABs

• Never use TABs

• Configure your editor to expand TABs to spaces, and/or highlight TABs in source code

• unless… you travel back in time to 1980 to edit GNU Makefiles
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Alignment

• Use alignment to highlight structure in the code!

• Do not use long lines

• Do not indent by more than a few spaces

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs
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Identifier names

• Use informative names for functions

• Use CamelCase for long names

• Use short names for function arguments

• Use similar naming schemes for arguments of similar types
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Spaces and parentheses

• Generally use exactly as many parentheses as are needed

• Use extra parentheses in selected places to highlight grouping, particularly in expressions

with many less known infix operators

• Function application should always be denoted with a space

• In most cases, infix operators should be surrounded by spaces
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Blank lines

• Use blank lines to separate top-level functions

• Also use blank lines for long sequences of let-bindings or long do-blocks, in order to group

logical units
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Avoid large functions

• Try to keep individual functions small

• Introduce many functions for small tasks

• Avoid local functions if they need not be local (why?)
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Type signatures

• Always give type signatures for top-level functions

• Give type signatures for more complicated local definitions, too

• Use type synonyms

checkTime :: Int -> Int -> Int -> Bool

checkTime :: Hours -> Minutes -> Seconds -> Bool

type Hours = Int
type Minutes = Int
type Seconds = Int
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Even better

checkTime :: Hours -> Minutes -> Seconds -> Bool

newtype Hours = Hours Int
newtype Minutes = Minutes Int
newtype Seconds = Seconds Int

Define separate types and carefully control how they can be constructed

Hiding the constructors, for example, makes it impossible to extract the underlying integers
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Comments

• Comment top-level functions

• Also comment tricky code

• Write useful comments, avoid redundant comments!

• Use Haddock
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Booleans

Keep in mind that Booleans are first-class values

Negative examples:

f x | isSpace x == True = ...

if x then True else False
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Use (data)types!

• Whenever possible, define your own datatypes

• Use Maybe or user-defined types to capture failure, rather than error or default values

• Use Maybe or user-defined types to capture optional arguments, rather than passing

undefined or dummy values

• Don’t use integers for enumeration types

• By using meaningful names for constructors and types, or by defining type synonyms, you

can make code more self-documenting
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Use common library functions

• Don’t reinvent the wheel. If you can use a Prelude function or a function from one of the

basic libraries, then do not define it yourself

• If a function is a simple instance of a higher-order function such as map or foldr, then use

those functions
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Pattern matching

• When defining functions via pattern matching, make sure you cover all cases

• Try to use simple cases

• Do not include unnecessary cases

• Do not include unreachable cases

• GHC will sometimes warn you about missing/unnecessary/unreachable patterns
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Avoid partial functions

• Always try to define functions that are total on their domain, otherwise try to refine the

domain type

• Avoid using functions that are partial
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Negative example

if isJust x then 1 + fromJust x else 0

Use pattern matching!
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Use let instead of repeating complicated code

Write

let x = foo bar baz in x + x * x

rather than

foo bar baz + foo bar baz * foo bar baz

Questions

• Is there a semantic difference between the two pieces of code?

• Could/should the compiler optimize from the second to the first version internally?

• https://gitlab.haskell.org/ghc/ghc/-/issues/701
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Let the types guide your programming

• Try to make your functions as generic as possible

• If you have to write a function of type Foo -> Bar, consider how you can destruct a Foo
and how you can construct a Bar

• When you tackle an unknown problem, think about its type first
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How to design programs

• Write down example inputs and outputs that your program should accept and produce

• Generalize these examples into data types

• Turn these examples into tests

• Try to implement the program

• If you struggle, try to break your problem into smaller pieces and repeat
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Packages and modules
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Code in the large

Once you start to organize larger units of code, you typically want to split this over several

different files

In Haskell, each file consists of a separatemodule

Let’s start with a quick recap and reviewing the strengths and weaknesses of Haskell’s module

system
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Goals of the Haskell module system

• Units of separate compilation (not supported by all compilers)

• Namespace management

There is no language concept of interfaces or signatures in Haskell, except for the class system

44



Syntax

module M(D(),f,g) where
import Data.List(unfoldr)
import qualified Data.Map as M
import Control.Monad hiding (mapM)

• Hierarchical modules

• Export list

• Import list, hiding list

• Qualified, unqualified

• Renaming of modules
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Module Main

• If the module header is omitted, the module is automatically named Main

• Each full Haskell program has to have a module Main that defines a function

main :: IO ()
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Hierarchical modules

Module names consist of at least one identifier starting with an uppercase letter, where each

identifier is separated from the rest by a period

• This former extension to Haskell 98, has been formalized in an addendum to the Haskell 98

Report and is now widely used

• Implementations expect a module named X.Y.Z to be located at X/Y/Z.hs or X/Y/Z.lhs

• There are no relative module names – every module is always referred to by a unique name
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Hierarchical modules

Most of Haskell 98 standard libraries have been extended and placed in the module hierarchy –

moving List to Data.List

Good practice: Use the hierarchical modules where possible. In most cases, the top-level module

should only refer to other modules in other directories
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Importing modules

• The import declarations can only appear in the module header, i.e., after the module
declaration but before any other declarations

• A module can be imported multiple times in different ways

• If a module is imported qualified, only the qualified names are brought into scope.

Otherwise, the qualified and unqualified names are brought into scope

• A module can be renamed using as. Then, the qualified names that are brought into scope

are using the new modid

• Name clashes are reported lazily
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Prelude

The module Prelude is imported implicitly as if

import Prelude

has been specified, but this can be disabled by placing

{-# LANGUAGE NoImplicitPrelude #-}

at the top of the file.

An explicit import declaration for Prelude causes all names from Prelude to be available only in

their qualified form:

import qualified Prelude
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Module dependencies

• Modules are allowed to be mutually recursive

• This is not well supported by GHC, and therefore somewhat discouraged

Question:
Why might it be difficult?
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Good practice

• Use qualified names instead of pre- and suffixes to disambiguate

• Use renaming of modules to shorten qualified names

• Avoid hiding

• Recall that you can import the same module multiple times
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Packages and modules

53



Packages and modules

• Packages are the unit of distibution of code

• You can depend on them

• Hackage is a repository of freely available packages

• Each packages provides one or moremodules

• Modules provide namespacing to Haskell

• Each module declares which functions, data types and type classes it exports

• You use elements from other modules by importing

• In the presence of packages, an identifier is no longer uniquely determined by module +

name, but additionally needs package name + version
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The GHC package manager

• The GHC package manager is called ghc-pkg

• The set of packages GHC knows about is stored in a package configuration database,

package.conf

• Multiple package configuration databases:

• one global per installation of GHC

• one local per user

• one per sandboxed project

• more local databases for special purposes
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Listing known packages

$ ghc-pkg list
/usr/lib/ghc-6.8.2/package.conf:
Cabal-1.2.3.0, GLUT-2.1.1.1, HDBC-1.1.3,
HUnit-1.2.0.0, OpenGL-2.2.1.1, QuickCheck-1.1.0.0,
array-0.1.0.0, base-3.0.1.0, binary-0.4.1,
cairo-0.9.12.1, containers-0.1.0.1, cpphs-1.5,
fgl-5.4.1.1, filepath-1.1.0.0, gconf-0.9.12.1,
(ghc-6.8.2), glade-0.9.12.1, glib-0.9.12.1,
...
/home/wouter/.ghc/i386-linux-6.8.2/package.conf:
binary-0.4.1, vty-3.0.0, zlib-0.4.0.2

• Parenthesized packages are hidden

• Exposed packages are usually available automatically
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The GHC package manager

Golden rule: you only use ghc-pkg to solve problems with your installation

$ ghc-pkg check
% Empty or only warnings means the
% package database is in good shape

… but at that point it’s probably easier to just rm -rf

Instead, use a package manager, such as cabal or stack, to manipulate the database
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Cabal: a Haskell package manager

• A unified package description format

• A build system for Haskell applications and libraries, which is easy to use

• Tracks dependencies between Haskell packages

• Platform-independent, compiler-independent

• Generic support for preprocessors, inter-module dependencies, etc.

• Specifically tailored to the needs of a “normal” package

• Integrated into the set of packages shipped with GHC

Cabal is under active development, but very stable (TLM: >_>)
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Hackage

Online Cabal package database

• Everybody can upload their Cabal-based packages

• Automated building of packages

• Allows automatic online access to Haddock documentation

http://hackage.haskell.org/
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Project in the filesystem

your-project........................................................................root folder
your-project.cabal..............................................info about dependencies

src.......................................................................source files live here

M
A.hs................................................................defines module M.A
B.hs................................................................defines module M.B

M.hs.....................................................................defines module M
N.hs.....................................................................defines module N

• The project file – ending in .cabal – usually matches the name of the folder

• The name of a modulematches its place

• A.B.C lives in src/A/B/C.hs
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Initializing a project (cabal)

1. Create a folder your-project
$ mkdir your-project
$ cd your-project

2. Initialize the project file

$ cabal init
Package name? [default: your-project]
...
What does the package build:
1) Library
2) Executable
Your choice? 2
...
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Initializing a project

2. Initialize the project file (cont.)

...
Source directory:
* 1) (none)
2) src
3) Other (specify)

Your choice? [default: (none)] 2
...

3. An empty project structure is created

your-project
your-project.cabal
src
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The project (.cabal) file

-- General information about the package
name: my-awesome-afp-project
version: 0.1.0.0
author: Wouter Swierstra
...

-- How to build an executable (program)
executable your-project

main-is: Main.hs
hs-source-dirs: src
build-depends: base
...
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Dependencies

Dependencies are declared in the build-depends field of a Cabal stanza such as executable

• Just a comma-separated list of packages

• Packages names as found in Hackage

• Upper and lower bounds for version may be declared

• A change in the major version of a package usually involves a breakage in the library interface

• This is an honour system: the Haskell ecosystem has no agreed upon versioning scheme

(SemVer vs. PvP)

build-depends: base,
transformers >= 0.5 && < 1.0
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Executables

In an executable stanza you have a main-is field

• Tells which file is the entry point of your program

module Main where

import M.A
import M.B

main :: IO ()
main = -- Start running here
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Building and running

1. Install the dependencies

$ cabal update
$ cabal install --only-dependencies

• Not needed if you use cabal build

2. Compile and link the code

$ cabal build

3. Run the executable

$ cabal run your-project
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Stack and Stackage

Besides cabal, there is a another package manager, Stack

• Unlike Cabal, Stack manages your GHC installation

• Uses sandboxes and local database by default

Stack uses Stackage as its source of packages: https://www.stackage.org

• Curated set of packages (subset of Hackage)

• Pro: installation plan always succeeds

• Con: package versions may lag behind Hackage

Right now, both tools work flawlessly for normal usage

There are vocal advocates of both approaches

67



Initialise a project (stack)

1. Create a new project, either…

• From scratch

$ stack new your-project
• If you already have a Cabal file

$ stack init

2. Initialize the project only once, which downloads all necessary tools including GHC

$ stack setup
3. Compile and link the code

$ stack build
4. Run the executable

$ stack exec your-project
$ stack run
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Other useful tools
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-Wall is your friend

GHC includes a lot of warnings for suspicious code

• Unused bindings or type variables

• Incomplete pattern matching

• Instance declaration without the minimal methods

Enable this option in your .cabal stanzas

library
build-depends: base, transformers, ...
ghc-options: -Wall
...
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HLint

• A simple tool to improve your Haskell style

• Developed by Neil Mitchell

• Scans source code, provides suggestions

• Makes use of generic programming (Uniplate)

• Suggests only correct transformations

• New suggestions can be added, and some suggestions can be selectively disabled

• Easy to install (via cabal install hlint)
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HLint, simple example

Run it with hlint path/to/your/source

• Source might be a file or a full folder

Found:
and (map even xs)

Why not:
all even xs
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HLint, larger example

i = (3) + 4
nm_With_Underscore = i

y = foldr (:) [] (map (+1) [3,4])

z = \x -> 5
p = \x y -> y

• What does HLint complain about, why?

• Would you always want such complaints?
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HLint
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Haddock

Haddock is the standard tool for documenting Haskell modules

• Think of the Javadoc, RDoc, Sphinx… of Haskell

• All Hackage documentation is produced by Haddock

Haddock uses comments starting with | or ^

-- | Obtains the first element
head :: [a] -> a

tail :: [a] -> [a]
-- ^ Obtains all elements but the first one
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Haddock, larger example

-- | 'filter', applied to a predicate and a list,
-- returns the list of those elements that
-- /satisfy/ the predicate
filter :: (a -> Bool) -- ^ Predicate over 'a'

-> [a] -- ^ List to be filtered
-> [a]

• Single quotes as in 'filter' indicate the name of a Haskell function, and cause automatic

hyperlinking. Referring to qualified names is also possible (even if the identifier is not

normally in scope)

• Emphasis with forward slashes: /satisfy/
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More markup

Haddock supports several more forms of markup:

• Sectioning to structure a module

• Code blocks in documentation

• These can be checked automatically using doctest

• References to whole modules

• Itemized, enumerated, and definition lists

• Hyperlinks

• Images
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Next time…

We will kick off with the lectures in earnest

• Start assembling a team for your project – we have a few suggested topics on the website,

but are happy to discuss others that match your interests!

• Make sure you have access to a modern Haskell installation
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