
Advanced Functional Programming

03 - Laziness

Wouter Swierstra & Trevor L. McDonell

Utrecht University

1

A simple expression

square :: Integer -> Integer
square x = x * x

square (1 + 2)
= -- magic happens in the computer
9

How do we reach that final value?

2

Strict or eager or call-by-value evaluation

In most programming languages:

1. Evaluate the arguments completely

2. Evaluate the function call

square (1 + 2)
= -- evaluate arguments
square 3
= -- go into the function body
3 * 3
=
9

3

Non-strict or call-by-name evaluation

Arguments are replaced as-is in the function body

square (1 + 2)
= -- go into the function body
(1 + 2) * (1 + 2)
= -- we need the value of (1 + 2) to continue
3 * (1 + 2)
=
3 * 3
=
9

4

Does call-by-name make any sense?

In the case of square, non-strict evaluation is worse

Is this always the case?

const x y = x -- forget about y

-- Call-by-value -- Call-by-name
const 5 (1 + 2) const 5 (1 + 2)
= =
const 5 3 5
=
5

5

Does call-by-name make any sense?

In the case of square, non-strict evaluation is worse

Is this always the case?

const x y = x -- forget about y

-- Call-by-value -- Call-by-name
const 5 (1 + 2) const 5 (1 + 2)
= =
const 5 3 5
=
5

5

Sharing expressions

square (1 + 2)
=
(1 + 2) * (1 + 2)

Why redo the work for (1 + 2)?

We can share the evaluated result

square (1 + 2)
=
Δ * Δ
↑___↑___ (1 + 2)

= 3
=
9

6

Sharing expressions

square (1 + 2)
=
(1 + 2) * (1 + 2)

Why redo the work for (1 + 2)?
We can share the evaluated result

square (1 + 2)
=
Δ * Δ
↑___↑___ (1 + 2)

= 3
=
9

6

Lazy evaluation

Haskell uses a lazy evaluation strategy

• Expressions are not evaluated until needed

• Duplicate expressions are shared

Lazy evaluation never requires more steps than call-by-value

Each of those not-evaluated expressions is called a thunk

7

Does it matter?

Is it possible to get different outcomes using different evaluation strategies?

Yes and no

8

Does it matter?

Is it possible to get different outcomes using different evaluation strategies?
Yes and no

8

Does it matter? - Correctness and efficiency

The Church-Rosser Theorem states that for terminating programs the result of the computation

does not depend on the evaluation strategy

But…

1. Performance might be different

• As square and const show

2. This applies only if the program terminates

• What about infinite loops?

• What about exceptions?

• What about programs run out of memory and crash?

9

Termination

loop x = loop x

• This is a well-typed program

• But loop 3 never terminates

-- Eager -- Lazy
const 5 (loop 3) const 5 (loop 3)
= =
const 5 (loop 3) 5
=
...

Lazy evaluation terminates more often than eager

10

Build your own control structures

if_ :: Bool -> a -> a -> a
if_ True t _ = t
if_ False _ e = e

• In eager languages, if_ evaluates both branches

• In lazy languages, only the one being selected

For that reason,

• In eager languages, if has to be built-in

• In lazy languages, you can build your own control structures

11

Short-circuiting

(&&) :: Bool -> Bool -> Bool
False && _ = False
True && x = x

• In eager languages, x && y evaluates both conditions

• But if the first one fails, why bother?

• C/Java/C# include a built-in short-circuit conjunction

• In Haskell, x && y only evaluates the second argument if the first one is True
• False && (loop True) terminates

12

“Until needed”

How does Haskell know how much to evaluate?

• By default, everything is kept in a thunk

• When we have a case distinction, we evaluate enough to distinguish which branch to follow

take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

• If the number is 0 we do not need the list at all

• Otherwise, we need to distinguish [] from x:xs

13

Weak Head Normal Form

An expression is in weak head normal form (WHNF) if it is:

• A constructor with (possibly non-evaluated) data inside

• True or Just (1 + 2)

• An anonymous function

• The body might be in any form

• \x -> x + 1 or \x -> if_ True x x

• A built-in function applied to too few arguments

Every time we need to distinguish the branch to follow the expression is evaluated until its WHNF

14

Case study: length and take

Given the following definitions:

take 0 xs = []
take n xs = head xs : take (n - 1) (tail xs)

length [] = 0
length (x:xs) = 1 + length xs

What is the result of evaluating length (take 3 undefined)?

Somewhat surprisingly – this expression evaluates to 3!

15

Case study: length and take

Given the following definitions:

take 0 xs = []
take n xs = head xs : take (n - 1) (tail xs)

length [] = 0
length (x:xs) = 1 + length xs

What is the result of evaluating length (take 3 undefined)?

Somewhat surprisingly – this expression evaluates to 3!

15

Why?

length (take 3 undefined)
length (head undefined : take 2 (tail undefined))
1 + length (take 2 (tail undefined))
1 + length (head (tail undefined) : take 1 (tail (tail undefined)))
1 + 1 + length (take 1 (tail (tail undefined)))
1 + 1 + length (head (tail (tail undefined)) : take 0 (tail (tail (tail undefined))))
1 + 1 + 1 + length (take 0 (tail (tail (tail undefined))))
1 + 1 + 1 + length []
1 + 1 + 1 + 0
1 + 1 + 1
1 + 2
3

16

Case study: Sieve of Eratosthenes

Idea: compute the list of all prime numbers by ‘crossing out’ all the multiples of 2. The next prime

number must be 3. Cross out the multiples of 3. The next prime number must be 5. Repeat…

In Haskell we write this in three simple steps:

1. Remove the multiples of a given number:

removeMultiples n xs = filter ((/=) 0) . (`mod` n)) xs

2. Define a prime as any number that passes the sieve:

sieve (p : ns) = p : sieve (removeMultiples p ns)

3. Define the primes:

primes = sieve [2..]

17

Case study: Sieve of Eratosthenes

Idea: compute the list of all prime numbers by ‘crossing out’ all the multiples of 2. The next prime

number must be 3. Cross out the multiples of 3. The next prime number must be 5. Repeat…

In Haskell we write this in three simple steps:

1. Remove the multiples of a given number:

removeMultiples n xs = filter ((/=) 0) . (`mod` n)) xs

2. Define a prime as any number that passes the sieve:

sieve (p : ns) = p : sieve (removeMultiples p ns)

3. Define the primes:

primes = sieve [2..]

17

Case study: Sieve of Eratosthenes

Idea: compute the list of all prime numbers by ‘crossing out’ all the multiples of 2. The next prime

number must be 3. Cross out the multiples of 3. The next prime number must be 5. Repeat…

In Haskell we write this in three simple steps:

1. Remove the multiples of a given number:

removeMultiples n xs = filter ((/=) 0) . (`mod` n)) xs

2. Define a prime as any number that passes the sieve:

sieve (p : ns) = p : sieve (removeMultiples p ns)

3. Define the primes:

primes = sieve [2..]

17

Case study: Sieve of Eratosthenes

Idea: compute the list of all prime numbers by ‘crossing out’ all the multiples of 2. The next prime

number must be 3. Cross out the multiples of 3. The next prime number must be 5. Repeat…

In Haskell we write this in three simple steps:

1. Remove the multiples of a given number:

removeMultiples n xs = filter ((/=) 0) . (`mod` n)) xs

2. Define a prime as any number that passes the sieve:

sieve (p : ns) = p : sieve (removeMultiples p ns)

3. Define the primes:

primes = sieve [2..]

17

Case study: foldl'

From long, long time ago…

foldl _ v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl (+) 0 [1,2,3]
= foldl (+) (0 + 1) [2,3]
= foldl (+) ((0 + 1) + 2) [3]
= foldl (+) (((0 + 1) + 2) + 3) []
= ((0 + 1) + 2) + 3

18

Case study: foldl'
foldl (+) 0 [1,2,3]

= ((0 + 1) + 2) + 3

• Each of the additions is kept in a thunk

• Some memory needs to be reserved

• This has to be GC’ed after use

19

Case study: foldl'

20

Case study: foldl'

Just performing the addition is faster!

• Computers are fast at arithmetic

• We want to force additions before going on

foldl (+) 0 [1,2,3]
= foldl (+) (0 + 1) [2,3]
= foldl (+) 1 [2,3]
= foldl (+) (1 + 2) [3]
= foldl (+) 3 [3]
= foldl (+) (3 + 3) []
= foldl (+) 6 []
= 6

21

Forcing evaluation

Haskell has a primitive operation to force evaluation

seq :: a -> b -> b

A call of the form seq x y
• First evaluates x up to WHNF

• Then it proceeds normally to compute y

Usually, y depends on x somehow

22

Case study: foldl'

We can write a new version of foldl which forces the accumulated value before recursion is

unfolded

foldl' _ v [] = v
foldl' f v (x:xs) = let z = f v x

in z `seq` foldl' f z xs

This version solves the problem with addition

23

Case study: foldl'

24

Strict application

Most of the times we use seq to force an argument to a function, that is, strict application

($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

Because of sharing, x is evaluated only once

foldl' _ v [] = v
foldl' f v (x:xs) = ((foldl' f) $! (f v x)) xs

25

Something about (in)efficiency

We have seen that Haskell programs:

• can be very short

• and sometimes very inefficient

Question:

How to find out where time is spent?

Answer:

Use profiling

26

Something about (in)efficiency

We have seen that Haskell programs:

• can be very short

• and sometimes very inefficient

Question:

How to find out where time is spent?

Answer:

Use profiling

26

Laziness is a double-edged sword

• With laziness, we are sure that things are evaluated only as much as needed to get the result.

• But, being lazy means holding lots of thunks in memory:

• Memory consumption can grow quickly.

• Performance is not uniformly distributed.

Question:

How to find out where memory is spent?

How to find out where to sprinkle seqs?

Answer:

Use profiling

27

Laziness is a double-edged sword

• With laziness, we are sure that things are evaluated only as much as needed to get the result.

• But, being lazy means holding lots of thunks in memory:

• Memory consumption can grow quickly.

• Performance is not uniformly distributed.

Question:

How to find out where memory is spent?

How to find out where to sprinkle seqs?

Answer:

Use profiling

27

Example: segs

segs xs computes all the consecutive sublists of xs.

segs [] = [[]]
segs (x:xs) = segs xs ++ map (x:) (inits xs)

> segs [2,3,4]
[[],[4],[3],[3,4],[2],[2, 3],[2,3,4]]

This implementation is extremely inefficient.

28

Example: segsinits

We can compute inits and segs at the same time.

segsinits [] = ([[]], [[]])
segsinits (x:xs) =
let (segsxs, initsxs) = segsinits xs

newinits = map (x:) initsxs
in (segsxs ++ newinits, [] : newinits)

segs = fst . segsinits

29

Heap profile for segsinits

sds-prof +RTS -p -hc 440,761,105 bytes x seconds Wed Mar 8 16:57 2006

seconds0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

by
te

s

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

20M

(157)/segsinits/segs/mainM...

30

Example: pointfree

pointfree =
let p = not . null

next = filter p . map tail . filter p
in concat . takeWhile p . iterate next . inits

31

Heap profile for pointfree

pointfree-prof +RTS -p -hc 672,567 bytes x seconds Wed Mar 8 16:57 2006

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

by
te

s

0k

50k

100k

150k

200k

250k

300k

350k

400k

450k

(155)/mainMain.CAF

(156)/segments/mainMain.CAF

32

Example: listcomp

segs are just the tails of the inits!

listcomp xs =
[] : [t | i <- inits xs

, t <- tails i
, not (null t)]

main =
print (length (concat
(listcomp [1 :: Int .. 300])))

33

Heap profile for listcomp

listcomp-prof +RTS -p -hc 17,202 bytes x seconds Wed Mar 8 17:23 2006

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

by
te

s

0k

2k

4k

6k

8k

10k

12k

(154)main

(101)GHC.Handle.CAF

(155)/mainMain.CAF

(156)/listcomp/mainMain.CAF

34

How to produce these?

prompt> ghc -prof -fprof-auto -o listcomp-prof -O2 Segments.hs
prompt> ./listcomp-prof +RTS -hc -p
4545100
prompt> hp2ps listcomp-prof.hp

35

Semantics

The idea behind lazy evaluation stems back at least as far as 1976, when Henderson and Morris

published their paper ‘A lazy evaluator’.

This paper describes an implementation of LISP, using pointers, to lazily share intermediate

results when possible.

But what are the exact semantics?

Defining such semantics was surprisingly hard!

It took until 2000 until there was a satisfactory operational semantics for lazy evaluation.

36

Semantics

The idea behind lazy evaluation stems back at least as far as 1976, when Henderson and Morris

published their paper ‘A lazy evaluator’.

This paper describes an implementation of LISP, using pointers, to lazily share intermediate

results when possible.

But what are the exact semantics?

Defining such semantics was surprisingly hard!

It took until 2000 until there was a satisfactory operational semantics for lazy evaluation.

36

A natural semantics for lazy evaluation

e ::= x (variables)
| e x (application)
| λ x -> e (abstraction)
| let x = e in e' (let bindings)

Note that we only ever apply expressions to variables!

We may need to rewrite arbitrary programs into this form, where any non-variable argument is

let-bound.

37

A natural semantics for lazy evaluation

Figure 1: Semantics

38

References

• Real World Haskell has a chapter on profiling:

https://book.realworldhaskell.org/read/profiling-and-optimization.html

• A natural semantics for lazy evaluation, John Launchbury

• The flame war between Bob Harper and Lennart Augustsson is both amusing and insightful:

https:
//augustss.blogspot.com/2011/05/more-points-for-lazy-evaluation-in.html

• More recently – Hackett & Hutton, Call-by-Need Is Clairvoyant Call-by-Value, ICFP 2019

39

https://book.realworldhaskell.org/read/profiling-and-optimization.html
https://augustss.blogspot.com/2011/05/more-points-for-lazy-evaluation-in.html
https://augustss.blogspot.com/2011/05/more-points-for-lazy-evaluation-in.html

