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Today

• Lambda calculus – the foundation of functional programming

• What makes lambda calculus such a universal language of computation?
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The Lambda Calculus

• Introduced by Church 1936 (or even earlier).

• Formal language based on variables, function abstraction and application (substitution).

• Allows to express higher-order functions naturally.

• Equivalent in computational power to a Turing machine.

• Is at the basis of functional programming languages such as Haskell.
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What and why?

• A simple language with relatively few concepts.

• Easy to reason about.

• Original goal: reason about expressiveness of computations.

• Today: core language for playing with all sorts of language features.

• Many flavours: untyped, typed, added constants and constructs.
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Lambda calculus: definition

There are only three constructs:

e ::= x (variables)
| e e (application)
| λ x -> e (abstraction)
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Conventions

• Note: application associates to the left:

a b c = (a b) c
• Note: only unary functions and unary application – but we write λ x y -> e for λ x ->
(λ y -> e).

• Note: the function body of a lambda extends as far as possible to the right: λ x -> e f
should be read as

λ x -> (e f)
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Definitions

• We usually consider terms equal up to renaming (alpha equivalence);

• The central computation rule is beta reduction:

(λ x -> e) (a) reduces to e [x/a]
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Applications?

It seems as if we can do nothing useful with the lambda calculus.

There are no constants – no numbers, for instance.

But it turns out that we can encode recursion, numbers, booleans, and just about any other data

type.
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Church numerals

zero = λ s z -> z
one = λ s z -> (s z)
two = λ s z -> (s (s z))
three = λ s z -> (s (s (s z)))
...

So far, so good, but can we calculate with these numbers?
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Addition

suc = λ n -> λ s z -> (s (n s z)))

add = λ m n -> m suc n

Does this work as expected?

suc two

(λ n -> (λ s z -> (s (n s z)))) two

λ s z -> (s (two s z))

λ s z -> (s (s (s z)))
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Church Booleans

true = λ t f -> t
false = λ t f -> f
ifthenelse = λ c t e -> c t e

The function ifthenelse is almost the identity function.

and = λ x y -> ifthenelse x y false
and = λ x y -> x y false
or = λ x y -> ifthenelse x true y
or = λ x y -> x true y

The function isZero takes a number and returns a Bool.

isZero = λ n -> (n (λ x -> false) true)
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Pairs

pair = λ x y -> (λ p -> (p x y))

fst = λ p -> (p (λ x y -> x))
snd = λ p -> (p (λ x y -> y))

The function pair remembers its two parameters and returns them when asked by its third

parameter.
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How do you come up with these

definitions?
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Church encoding for arbitrary datatypes

There is a correspondence between the so-called fold (or catamorphism or eliminator) for a

datatype and its Church encoding.

Haskell:

data Nat = Suc Nat | Zero

foldNat Zero s z = z
foldNat (Suc n) s z = s (foldNat n s z)

Lambda calculus:

zero = λ s z -> z
suc n = λ s z -> (s (n s z))
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Church encoding for arbitrary datatypes – contd.

Haskell:

data Bool = True | False

foldBool True t f = t
foldBool False t f = f

Lambda calculus:

true = λ t f -> t
false = λ t f -> f

Note that foldBool is just ifthenelse again.
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Church encoding for arbitrary datatypes – contd.

Haskell:

data Pair x y = Pair x y

foldPair (Pair x y) p = p x y

Lambda calculus:

pair = λ x y -> (λ p -> (p x y))
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Encoding vs. adding constants

The fact that we can encode certain entities in the lambda justifies that we can add them as

constants to the language without changing the nature of the language.
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Example (adding Booleans)

e ::= true
| false
| if e then e else e

Once we have new forms of expressions, we need more than just beta-reduction:

if true then e1 else e2 --> e1
if false then e1 else e2 --> e2
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Towards Haskell

Haskell is based on the lambda calculus.

Yet, so far it seems hard to believe that we can desugar Haskell to some form of lambda calculus.
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Binding names with let

Haskell allows us to bind identifiers to expressions in the language using let.

We have only introduced informal abbreviations for lambda terms so far such as true or isZero.
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Binding names with let – contd.

In fact, let can simply be desugared to a lambda binding.

let x = e1 in e2 = (λ x -> (e2)) e1

Note that this does not work if x is a recursive binding or if you want to preserve sharing.

What about recursion, then?
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Recursion

Haskell example

fac = \n -> if n == 0
then 1
else n * fac (n - 1)

fac = fix
(\fac' n -> if n == 0

then 1
else n * fac' (n - 1))

The desired function fac can be viewed as a fixed point of the related non-recursive function

fac'.
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Fixed points

A fixed-point combinator is a combinator fix with the property that for any f,

-- Using recursion directly
fix f = f (fix f)

In particular,

fix fac' = fac' (fix fac')

thus fix fac' is a fixed point of fac'.
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Fixed-point combinators

Many fixed-point combinators can be defined in the untyped lambda calculus.

Here is one of the smallest and most famous ones, called Y.

Y = λ f -> (λ x -> (f (x x))) (λ x -> (f (x x)))
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Verification that Y is a fixed-point combinator

Y g

= (by definition)

(λ f -> (λ x -> (f (x x))) (λ x -> (f (x x)))) g

= (beta-reduction of λf)

(λ x -> (g (x x))) (λ x -> (g (x x)))

= (beta-reduction of λx)

g ((λ x -> (g (x x))) (λ x -> (g (x x))))

= (by second equality)

g (Y g)
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Recap

It is thus possible to desugar a recursive Haskell definition into the lambda calculus by translating

recursion into applications of fix.

Conversely, we can justify adding recursion as a construct to the lambda calculus without

changing its essential nature.
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General vs. structural recursion

Note that most recursive functions can actually be defined without a fixed-point combinator. We

have already defined add:

add = λ m n -> (m suc n)

In Haskell, add would be recursive

data Nat = Suc Nat | Zero

add (Suc m) n = Suc (add m n)
add Zero n = n

but can also be defined in terms of foldNat:

add m n = foldNat m Suc n
27



General vs. structural recursion – contd.

Functions defined in terms of a fold function are called structurally recursive.

Recursion using the fixed-point combinator is called general recursion.

Writing functions using general recursion is often perceived as simpler or more direct.

Structural recursion is often more well-behaved. For instance, for many datatypes it can be proved

that if the arguments to the fold terminate, the structurally recursive function also terminates.
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Pattern matching

In Haskell we can define functions using pattern matching:

data Nat = Suc Nat | Zero

pred (Suc m) = m
pred Zero = Zero

Question

How can we define pred for the Church numerals?
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Case function

Alternatively, pattern matching via case on a natural number can be captured as a function:

caseNat :: Nat -> (Nat -> r) -> r -> r
caseNat (Suc n) s z = s n
caseNat Zero s z = z

pred = \m -> caseNat m
(\ m' -> m')
Zero

The case function can be expressed in terms of the fold for that datatype, and hence the Church

encoding.
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Case function – contd.

Haskell:

caseNat :: Nat -> (Nat -> r) -> r -> r
caseNat (Suc n) s z = s n
caseNat Zero s z = z

foldNat :: Nat -> (s -> s) -> s -> s
foldNat (Suc n) s z = s (foldNat n s z)
foldNat Zero s z = z
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Case via fold

We call foldNat choosing s = (r, Nat) – that is pairing the return type and natural number:

caseNat n s z =
fst (foldNat n (\(_,r) -> (s r, Suc r)) (z, Zero))

The second component of the pair just constructs the natural number again. This is how we can

access the predecessor!
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Nested patterns

Haskell allows nested patterns, too:

fib Zero = Zero
fib (Suc Zero) = Suc Zero
fib (Suc (Suc n)) = add (fib n) (fib (Suc n))

These can easily be desugared to nested applications of case using only flat patterns (and hence

to applications of caseNat):

fib n = case n of
Zero -> Zero
Suc n' -> case n' of

...
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Recap

We have seen how most Haskell constructs can be desugared to the lambda calculus:

• constructors of datatypes using the Church encoding,

• non-recursive let using lambda abstractions,

• general recursion using a fixed-point combinator,

• pattern matching using possibly nested applications of case functions.
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Recap – contd.

Many other Haskell constructs can be expressed in terms of the ones we have already seen – for

instance:

• where-clauses can be transformed into let
• if-then-else can be expressed as a function

• list comprehensions can be transformed into applications of map, concat and

if-then-else
• monadic do notation can be transformed into applications of a limited number of functions
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Even Simpler

A straightforward implementation of the lambda calculus may give rise to abitrary large reduction

steps. We can represent all lambda expressions using only three combinators with the following

reduction behaviour:

S f g x = (f x) (g x)
K y x = y
I x = x
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Translation

Given a lambda term of the form – how can we translate this to an expression using SKI?

data SKI = Var String | S | K | I | App SKI SKI

toSKI :: Lambda -> SKI
toSKI (Var x) = Var x
toSKI (App t1 t2) = (toSKI t1) `App` (toSKI t2)
toSKI (Lam x t) = remove x (toSKI t)

The auxiliary function remove does the actual work…
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Bracket abstraction

remove :: Var -> SKI -> SKI
remove x (Var y)

| x == y = I
remove x (App t1 t2) =

S `App` (remove x t1)
`App` (remove x t2)

remove x s = K `App` s

This is sometimes called bracket abstraction.

38



Intuition

What’s going on?

S f g x = (f x) (g x)
K y x = y
I x = x

S is duplicating a variable; K is discarding a variable; I is using a variable.

Bracket abstraction simply explains how to route the argument of a function to the variable’s

occurrences in the lambda’s body.
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Alternatives

Haskell Curry proposed the following combinators:

B x y z = x (y z)
C x y z = x z y
K x y = x
W x y = x y y

Here B ‘routes arguments’ to the left only; C ‘routes arguments’ to the right; and W duplicates its

inputs.
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Even Simpler

The combinator I is superfluous:

S K K x --> (K x) (K x) --> x

and hence

I = S K K
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Even Simpler

In 1989 Jeroen Fokker (UU) invented:

X = λ f -> (f S f3)
f3 = λ p _ _ -> p -- first of three

with which we can define K as follows:

K y x --> X X y x

Does it reduce as expected?

--> X S f3 y x
--> S S f3 f3 y x
--> S f3 (f3 f3) y x
--> f3 y (f3 f3 y) x
--> y
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Even simpler

Check for yourself:

S = X (X X)
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Back to Haskell

This is nice – but what does this have to do with Haskell?

GHC translates to an intermediate language: GHC Core.

GHC Core is really little more than a (typed) lambda calculus.

You can read the spec on GitHub:

https://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf
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Core sketch

GHC Core is based on System Fc – a typed lambda calculus extended with type coercions.

• variables, lambdas, and application;

• literals;

• let bindings;

• case expressions;

• coercions – used to implement GADTs and type families;

• ‘ticks’ – used for HPC to track program coverage.

Inspecting core can be useful to see how code is generated and optimized.
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Generating core

alias ghci-core="ghci -ddump-simpl \
-dsuppress-idinfo -dsuppress-coercions \
-dsuppress-type-applications \
-dsuppress-uniques -dsuppress-module-prefixes"

The following Haskell code and corresponding Core:

f :: Int -> Int
f x = x + 1

f :: Int -> Int
f = \ (x :: Int) ->

case x of _ { I# x1 -> I# (+# x1 1) }
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What we haven’t discussed yet

Types

Compare

false = λ t f -> f
zero = λ s z -> z

We can easily write terms that do not make sense in lambda calculus; Haskell has types to prevent

that.

Overloading

In Haskell, functions can be overloaded using type classes. How can such overloading be resolved

and desugared?

47



What we haven’t discussed yet – contd.

Laziness

Haskell makes use of a particular evaluation strategy called lazy evaluation. We have not looked at

evaluation strategies at all so far.

Side effects

The lambda calculus has no notion of effects, not even encapsulated effects such as Haskell offers

with IO. So the behaviour of IO cannot be described by reduction to the lambda calculus.
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Conclusion

“The lambda calculus has many applications.”
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