
Advanced Functional Programming

07 - GADTs

Wouter Swierstra & Trevor L. McDonell

Utrecht University

1



Generalized algebraic data types

(GADTs)

2



A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

This definition introduces:

• a new datatype Tree of kind * F> *.

• two constructor functions

Leaf F: Tree a
Node F: Tree a -> a -> Tree a -> Tree a

• the possibility to use the constructors Leaf and Node in patterns.

3



A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

This definition introduces:

• a new datatype Tree of kind * F> *.

• two constructor functions

Leaf F: Tree a
Node F: Tree a -> a -> Tree a -> Tree a

• the possibility to use the constructors Leaf and Node in patterns.

3



A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

This definition introduces:

• a new datatype Tree of kind * F> *.

• two constructor functions

Leaf F: Tree a
Node F: Tree a -> a -> Tree a -> Tree a

• the possibility to use the constructors Leaf and Node in patterns.

3



A datatype

data Tree a = Leaf
| Node (Tree a) a (Tree a)

This definition introduces:

• a new datatype Tree of kind * F> *.

• two constructor functions

Leaf F: Tree a
Node F: Tree a -> a -> Tree a -> Tree a

• the possibility to use the constructors Leaf and Node in patterns.

3



Alternative syntax

Observation

The types of the constructor functions contain sufficient information to describe the datatype.

data Tree a where
Leaf F: Tree a
Node F: Tree a -> a -> Tree a -> Tree a

Question

What are the restrictions regarding the types of the constructors?

4



Algebraic datatypes

In general, constructor types of an algebraic datatype T:

1. have a return type that is fully applied (of kind *):
T a1 FF. an

2. such that a1, FF., an are distinct type variables

3. only use type variables that appear in the return type

Example:

data Either a b where
Left F: a -> Either a b
Right F: b -> Either a b

5



Algebraic datatypes

In general, constructor types of an algebraic datatype T:

1. have a return type that is fully applied (of kind *):
T a1 FF. an

2. such that a1, FF., an are distinct type variables

3. only use type variables that appear in the return type

Example:

data Either a b where
Left F: a -> Either a b
Right F: b -> Either a b

5



Algebraic datatypes

In general, constructor types of an algebraic datatype T:

1. have a return type that is fully applied (of kind *):
T a1 FF. an

2. such that a1, FF., an are distinct type variables

3. only use type variables that appear in the return type

Example:

data Either a b where
Left F: a -> Either a b
Right F: b -> Either a b

5



Algebraic datatypes

In general, constructor types of an algebraic datatype T:

1. have a return type that is fully applied (of kind *):
T a1 FF. an

2. such that a1, FF., an are distinct type variables

3. only use type variables that appear in the return type

Example:

data Either a b where
Left F: a -> Either a b
Right F: b -> Either a b

5



Lifting restrictions

1. have a return type that is fully applied (of kind *):
T a1 FF. an

2. such that a1, FF., an are distinct type variables
3. only use type variables that appear in the return type

Does it make sense to lift these restrictions?

6



Excursion: Expression language

7



Excursion: Expression language

Imagine we’re implementing a small programming language in Haskell:

data Expr = LitI Int
| LitB Bool
| IsZero Expr
| Plus Expr Expr
| If Expr Expr Expr

8



Excursion: Expression language

Equivalently, we could define the data type as follows:

data Expr where
LitI F: Int -> Expr
LitB F: Bool -> Expr
IsZero F: Expr -> Expr
Plus F: Expr -> Expr -> Expr
If F: Expr -> Expr -> Expr -> Expr

9



Syntax: concrete vs abstract

Imagined concrete syntax:

if isZero (0 + 1) then False else True

Abstract syntax:

If (IsZero (Plus (LitI 0) (LitI 1)))
(LitB False)
(LitB True)

10



Type errors

It is all too easy to write ill-typed expressions such as:

If (LitI 0) (LitB False) (LitI 1)

How can we prevent programmers from writing such terms?

11



Phantom types

At the moment, all expressions have the same type:

data Expr = LitI Int
| LitB Bool
| FF.

We would like to distinguish between expressions of different types.

To do so, we add an additional type parameter to our expression data type.

12



Phantom types

At the moment, all expressions have the same type:

data Expr = LitI Int
| LitB Bool
| FF.

We would like to distinguish between expressions of different types.

To do so, we add an additional type parameter to our expression data type.

12



Phantom types

data Expr a = LitI Int
| LitB Bool
| IsZero (Expr Int)
| Plus (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)

Note that the type variable a is never actually used in the data type for expressions.

We call such type variables phantom types.

13



Constructing well typed terms

Rather than expose the constructors of our expression language, we can instead provide a

well-typed API for users to write terms:

litI F: Int -> Expr Int
litI = LitI

plus F: Expr Int -> Expr Int -> Expr Int
plus = Plus

isZero F: Expr Int -> Expr Bool
isZero = IsZero

This guarantees that users will only ever construct well-typed terms!

But, what about writing an interpreter for these expressions?
14



Evaluation

Before we write an interpreter, we need to choose the type that it returns.

Our expressions may evaluate to booleans or integers:

data Val = VInt Int
| VBool Bool

Defining an interpreter now boils down to defining a function:

eval F: Expr a -> Val

15



Evaluation

eval F: Expr a -> Val
eval (LitI n) = VInt n
eval (LitB b) = VBool b
eval (IsZero e) =

case eval e of
VInt n -> VBool (n F= 0)
_ -> error "type error"

eval (Plus e1 e2) =
case (eval e1, eval e2) of

(VInt n1, VInt n2) -> VInt (n1 + n2)
_ -> error "type error"

16



Evaluation (contd.)

• Evaluation code is mixed with code for handling type errors.

• The evaluator uses tags (i.e., constructors VInt, VBool) to distinguish values—these tags are

maintained and checked at runtime.

• Type errors can, of course, be prevented by writing a type checker for our embedded

language, or using phantom types.

• Even if we know that we only have type-correct terms, the Haskell compiler does not enforce

this.

17



Beyond phantom types

What if we encode the type of the term in the Haskell type?

data Expr a where
LitI F: Int -> Expr Int
LitB F: Bool -> Expr Bool
IsZero F: Expr Int -> Expr Bool
Plus F: Expr Int -> Expr Int -> Expr Int
If F: Expr Bool -> Expr a -> Expr a -> Expr a

Each expression has an additional type argument, representing the type it will evaluate to.

18



GADTs

GADTs lift the restriction that all constructors must produce a value of the same type.

• Constructors may have more specific return types

• Pattern matching causes type refinement

• Interesting consequences for pattern matching:

• when case-analyzing an Expr Int, it could not be constructed by LitB or IsZero;
• when case-analyzing an Expr Bool, it could not be constructed by LitI or Plus;
• when case-analyzing an Expr a, once we encounter the constructor IsZero in a pattern, we

know that we must be dealing with an Expr Bool;
• …

19



Evaluation revisited

eval F: Expr a -> a
eval (LitI n) = n
eval (LitB b) = b
eval (IsZero e) = eval e F= 0
eval (Plus e1 e2) = eval e1 + eval e2
eval (If e1 e2 e3)

| eval e1 = eval e2
| otherwise = eval e3

• No possibility for run-time failure; no tags required for the return value

• Pattern matching on a GADT requires a type signature. Why?

20



Limitation: type signatures are required

data X a where
C F: Int -> X Int
D F: X a
E F: Bool -> X Bool

f (C n) = [n] -- (1)
f D = [] -- (2)
f (E n) = [n] -- (3)

What is the type of f, with/without (3)? What is the (probable) desired type?

f F: X a -> [Int] -- (1) only
f F: X b -> [c] -- (2) only
f F: X a -> [Int] -- (1) + (2)

21



Limitation: type signatures are required

data X a where
C F: Int -> X Int
D F: X a
E F: Bool -> X Bool

f (C n) = [n] -- (1)
f D = [] -- (2)
f (E n) = [n] -- (3)

What is the type of f, with/without (3)? What is the (probable) desired type?

f F: X a -> [Int] -- (1) only
f F: X b -> [c] -- (2) only
f F: X a -> [Int] -- (1) + (2)

21



Extending our language

Let us extend the expression types with pair construction and projection:

data Expr a where
FF.
Pair F: Expr a -> Expr b -> Expr (a,b)
Fst F: Expr (a,b) -> Expr a
Snd F: Expr (a,b) -> Expr b

For Fst and Snd, the type of the non-projected component is ‘hidden’—that is, it is not visible

from the type of the compound expression.

22



Complete the definition

data Expr a where
FF.
Pair F: Expr a -> Expr b -> Expr (a,b)
Fst F: Expr (a,b) -> Expr a
Snd F: Expr (a,b) -> Expr b

eval F: Expr a -> a
eval FF.
eval (Pair x y) =
eval (Fst p) =
eval (Snd p) =

23



Evaluation again

eval F: Expr a -> a
eval FF.

eval (Pair x y) = (eval x, eval y)
eval (Fst p) = fst (eval p)
eval (Snd p) = snd (eval p)

24



GADTs

GADTs have become one of the more popular Haskell extensions.

The classic example for motivating GADTs is the type-safe interpreter, such as the one we have

seen here.

However, these richer data types offer many other applications.

In particular, they let us program with types in interesting new ways.

25



Lists with known length

26



Prelude.head: empty list

> myComplicatedFunction 42 "inputFile.csv"
FF* Exception: Prelude.head: empty list

Can we use the type system to rule out such exceptions before a program is run?

To do so, we’ll introduce a new list-like datatype that records the length of the list in its type.

27



Prelude.head: empty list

> myComplicatedFunction 42 "inputFile.csv"
FF* Exception: Prelude.head: empty list

Can we use the type system to rule out such exceptions before a program is run?

To do so, we’ll introduce a new list-like datatype that records the length of the list in its type.

27



Natural numbers and vectors

Natural numbers can be encoded as types (no constructors are required):

data Zero
data Succ n

Define a vector as a list with a fixed number of elements:

data Vec a n where
Nil F: Vec a Zero
Cons F: a -> Vec a n -> Vec a (Succ n)

28



Type-safe head and tail

head F: Vec a (Succ n) -> a
head (Cons x xs) = x

tail F: Vec a (Succ n) -> Vec a n
tail (Cons x xs) = xs

Question

Why is there no case for Nil is required?

Actually, a case for Nil results in a type error.

29



Type-safe head and tail

head F: Vec a (Succ n) -> a
head (Cons x xs) = x

tail F: Vec a (Succ n) -> Vec a n
tail (Cons x xs) = xs

Question

Why is there no case for Nil is required?

Actually, a case for Nil results in a type error.

29



More functions on vectors

map F: (a -> b) -> Vec a n -> Vec b n
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

zipWith F: (a -> b -> c) ->
Vec a n -> Vec b n -> Vec c n

zipWith f Nil Nil = Nil
zipWith f (Cons x xs) (Cons y ys) =

Cons (f x y) (zipWith f xs ys)

We can require that the two vectors have the same length!

This lets us rule out bogus cases.

30



Yet more functions on vectors

snoc F: Vec a n -> a -> Vec a (Succ n)
snoc Nil y = Cons y Nil
snoc (Cons x xs) y = Cons x (snoc xs y)

reverse F: Vec a n -> Vec a n
reverse Nil = Nil
reverse (Cons x xs) = snoc (reverse xs) x

What about appending two vectors, analogous to the (F+) operation on lists?

31



Problematic functions

• What is the type of our append function?

vappend F: Vec a m -> Vec a n -> Vec a ???

How can we add two types, n and m?

• Suppose we want to convert from lists to vectors:

fromList F: [a] -> Vec a n

Where does the type variable n come from? What possible values can it have?

32



Problematic functions

• What is the type of our append function?

vappend F: Vec a m -> Vec a n -> Vec a ???

How can we add two types, n and m?

• Suppose we want to convert from lists to vectors:

fromList F: [a] -> Vec a n

Where does the type variable n come from? What possible values can it have?

32



Problematic functions

• What is the type of our append function?

vappend F: Vec a m -> Vec a n -> Vec a ???

How can we add two types, n and m?

• Suppose we want to convert from lists to vectors:

fromList F: [a] -> Vec a n

Where does the type variable n come from? What possible values can it have?

32



Writing vector append

There are multiple options to solve that problem:

• construct explicit evidence; or

• use a type family (more on that in the next lecture).

33



Explicit evidence

Given two ‘types’ m and n, what is their sum?

We can define a GADT describing the graph of addition:

data Sum m n s where
SumZero F: Sum Zero n n
SumSucc F: Sum m n s -> Sum (Succ m) n (Succ s)

Using this function, we can now define append as follows:

append F: Sum m n s
-> Vec a m -> Vec a n -> Vec a s

append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)

34



Explicit evidence

Given two ‘types’ m and n, what is their sum?

We can define a GADT describing the graph of addition:

data Sum m n s where
SumZero F: Sum Zero n n
SumSucc F: Sum m n s -> Sum (Succ m) n (Succ s)

Using this function, we can now define append as follows:

append F: Sum m n s
-> Vec a m -> Vec a n -> Vec a s

append SumZero Nil ys = ys
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys)

34



Passing explicit evidence

This approach has one major disadvantage: we must construct the evidence—the values of type

Sum m n p—by hand every time we wish to call append.

Sometimes we can use fancy type class machinery to automate this construction.

35



Converting between lists and vectors

It is easy enough to convert from a vector to a list:

toList F: Vec a n -> [a]
toList Nil = []
toList (Cons x xs) = x : toList xs

This simply discards the type information we have carefully constructed.

36



Converting between lists and vectors

Converting in the other direction, however is not as easy:

fromList F: [a] -> Vec a n
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)

Question

This definition will not type check. Why?

The type says that the result must be polymorphic in n, that is, it returns a vector of any length,

rather than a vector of a specific (unknown) length.

37



Converting between lists and vectors

Converting in the other direction, however is not as easy:

fromList F: [a] -> Vec a n
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)

Question

This definition will not type check. Why?

The type says that the result must be polymorphic in n, that is, it returns a vector of any length,

rather than a vector of a specific (unknown) length.

37



From lists to vectors

We can

• specify the length of the vector being constructed in a separate argument; or

• hide the length using an existential type.

38



From lists to vectors (contd.)

Suppose we simply pass in a regular natural number, Nat:

data Nat = Zero | Succ Nat

fromList F: Nat -> [a] -> Vec a n
fromList Zero [] = Nil
fromList (Succ n) (x:xs) = Cons x (fromList n xs)
fromList _ _ = error "wrong length!"

This still does not solve our problem – there is no connection between the natural number that we

are passing and the n in the return type.

39



From lists to vectors (contd.)

Suppose we simply pass in a regular natural number, Nat:

data Nat = Zero | Succ Nat

fromList F: Nat -> [a] -> Vec a n
fromList Zero [] = Nil
fromList (Succ n) (x:xs) = Cons x (fromList n xs)
fromList _ _ = error "wrong length!"

This still does not solve our problem – there is no connection between the natural number that we

are passing and the n in the return type.

39



Singletons

We need to reflect type-level natural numbers on the value level.

To do so, we define yet another variation on natural numbers:

data Zero
data Succ n

data SNat n where
SZero F: SNat Zero
SSucc F: SNat n -> SNat (Succ n)

This is a singleton type—for any n, the type SNat n has a single inhabitant (the number n).

40



From lists to vectors

data SNat n where
SZero F: SNat Zero
SSucc F: SNat n -> SNat (Succ n)

fromList F: SNat n -> [a] -> Vec a n
fromList SZero [] = Nil
fromList (SSucc n) (x:xs) = Cons x (fromList n xs)
fromList _ _ = error "wrong length!"

Question

This function may still fail dynamically. Why?

41



From lists to vectors

We can

• specify the length of the vector being constructed in a separate argument; or

• hide the length using an existential type.

What about the second alternative?

42



From lists to vectors

We can define a wrapper around vectors, hiding their length:

data VecAnyLen a where
VecAnyLen F: Vec a n -> VecAnyLen a

A value of type VecAnyLen a stores a vector of some length with values of type a.

43



From lists to vectors

We can convert any list to a vector of some length as follows:

fromList F: [a] -> VecAnyLen a
fromList [] = VecAnyLen Nil
fromList (x:xs) =

case fromList xs of
VecAnyLen ys -> VecAnyLen (Cons x ys)

44



From lists to vectors

We can combine the two approaches and include a SNat in the packed type:

data VecAnyLen a where
VecAnyLen F: SNat n -> Vec a n -> VecAnyLen a

Question

How does the conversion function change?

Does this tell us anything new?

45



Comparing the length of vectors

We can define a boolean function that checks when two vectors have the same length

equalLength F: Vec a m -> Vec b n -> Bool
equalLength Nil Nil = True
equalLength (Cons _ xs) (Cons _ ys) = equalLength xs ys
equalLength _ _ = False

46



Comparing the length of vectors

Suppose I want to use this to check the lengths of my vectors:

if equalLength xs ys
then zipVec xs ys
else error "Wrong lengths"

zipVec F: Vec a n -> Vec b n -> Vec (a,b) n

Question

Will this type check?

No! When equalLength xs ys returns True, this does not provide any type level information

that m and n are equal.

How can we enforce that two types are indeed equal?

47



Comparing the length of vectors

Suppose I want to use this to check the lengths of my vectors:

if equalLength xs ys
then zipVec xs ys
else error "Wrong lengths"

zipVec F: Vec a n -> Vec b n -> Vec (a,b) n

Question

Will this type check?

No! When equalLength xs ys returns True, this does not provide any type level information

that m and n are equal.

How can we enforce that two types are indeed equal?

47



Equality type

48



Equality type

Just as we saw for the Sum type, we can introduce a GADT that witnesses that two types are equal:

data Equal a b where
ReFl F: Equal a a

Pattern matching on ReFl produces a proof that a ~ b.

49



Properties of the equality relation

Equal is an equivalence relation.

reFl F: Equal a a
sym F: Equal a b -> Equal b a
trans F: Equal a b -> Equal b c -> Equal a c

How are these functions defined?

reFl = ReFl
sym ReFl = ReFl
trans ReFl ReFl = ReFl

50



Properties of the equality relation

Equal is an equivalence relation.

reFl F: Equal a a
sym F: Equal a b -> Equal b a
trans F: Equal a b -> Equal b c -> Equal a c

How are these functions defined?

reFl = ReFl
sym ReFl = ReFl
trans ReFl ReFl = ReFl

50



Build an equality proof

Instead of returning a boolean, we can now provide evidence that the length of two vectors is

equal:

eqLength F: Vec a m -> Vec b n -> Maybe (Equal m n)
eqLength Nil Nil = Just ReFl
eqLength (Cons x xs) (Cons y ys)

| Just ReFl <- eqLength xs ys
= Just ReFl

eqLength _ _ = Nothing

51



Using equality

test F: Vec a m -> Vec b (Succ n) -> Maybe (a,b)
test xs ys =

case eqLength xs ys of
Just ReFl -> Just (head (zipVec xs ys))
_ -> Nothing

Question

Why does this type check?

52



Expressive power of equality

The equality type can be used to encode other GADTs.

Recall our expression example using phantom types:

data Expr a = LitI Int
| LitB Bool
| IsZero (Expr Int)
| Plus (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)

53



Expressive power of equality

We can use equality proofs and phantom types to implement (some) GADTs:

data Expr a
= LitI (Equal a Int) Int
| LitB (Equal a Bool) Bool
| IsZero (Equal a Bool) (Expr Int)
| Plus (Equal a Int) (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)

54



Summary

• GADTs can be used to encode advanced properties of types in the type language.

• We end up mirroring expression-level concepts on the type level (e.g. natural numbers).

• GADTs can also represent data that is computationally irrelevant, but is used to guide the

type checker (equality proofs, evidence for addition).

55


	Generalized algebraic data types (GADTs)
	Excursion: Expression language
	Lists with known length
	Equality type

