
Advanced Functional Programming

09 - Generic programming

Wouter Swierstra & Trevor L. McDonell

Utrecht University

1

Today

• Type-directed programming in action

• Generic programming: theory and practice

• Examples of type families

2

Motivation

Similar functionality for different types

• equality, comparison

• mapping over the elements, traversing data structures

• serialization and deserialization

• generating (random) data

• …

Often, there seems to be an algorithm independent of the details of the datatype at hand. Coding

this pattern over and over again is boring and error-prone.

3

Deriving

We can use Haskell’s derivingmechanism to get some functionality for free:

data Tree = Leaf
| Node Tree Int Tree
deriving (Show, Eq)

This works for a handful of built-in classes, such as Show, Ord, Read, etc.

But what if we want to derive instances for classes that are not supported?

4

Example: encoding values

data Tree = Leaf | Node Tree Int Tree
data Bit = O | I

encodeTree :: Tree -> [Bit]
encodeTree Leaf = [O]
encodeTree (Node l x r) = [I] ++ encodeTree l

++ encodeInt x
++ encodeTree r

We assume a suitable encoding exists for integers:

encodeInt :: Int -> [Bit]

5

Example: encoding values

data Lam = Var Int
| App Lam Lam
| Abs Lam

encodeLam :: Lam -> [Bit]
encodeLam (Var n) = [O] ++ encodeInt n
encodeLam (App f a) = [I,O] ++ encodeLam f

++ encodeLam a
encodeLam (Abs e) = [I,I] ++ encodeLam e

6

Encode: Underlying ideas

In both cases we have seen, we:

• encode the choice between different constructors using sufficiently many bits,

• and append the encoded arguments of the constructor being used in sequence.

• use the encode function being defined at the recursive positions

Goal
Express the underlying algorithm for encode in such a way that we do not have to write a new

version of encode for each datatype anymore.

7

The idea

(Datatype-)Generic Programming

Techniques to exploit the structure of datatypes to define functions by induction over the type

structure.

8

Approach taken in this lecture

• define a uniform representation of data types;

• define a functions to and from to convert values between user-defined datatypes and their

representations.

• define your generic function by induction on the structure the representation.

9

Regular datatypes

Most Haskell datatypes have a common structure:

data Pair a b = Pair a b
data Maybe a = Nothing | Just a
data Tree a = Tip | Bin (Tree a) a (Tree a)
data Ordering = LT | EQ | GT

Informally:

• A datatype can be parameterized by a number of variables.

• A datatype has a number of constructors.

• Every constructor has a number of arguments.

• Every argument is a variable, a different type, or a recursive call.

10

Constructing regular datatypes

Idea

If we can describe regular datatypes in a different way, using a limited number of combinators, we

can use this structure to define algorithms for all regular datatypes.

We proceed in two steps:

• abstract over recursion

• describe the “remaining” structure systematically.

11

Fixpoints

We can define fix in Haskell using the defining property of fixed point combinators:

fix f = f (fix f)

This lets us capture recursion explicitly – enabling us to memoize computations, for example.

Question

What is the type of fix?

12

Fixpoints

We would like to define a similar fixpoint operation to describe recursion in datatypes.

For functions, we abstract over the recursive calls:

fac :: (Int -> Int) -> Int -> Int
fac = \fac x -> if x == 0 then 1 else x * fac (x-1)

For data types, let’s do the same:

data Tree t = Leaf
| Node t Int t

We introduce a separate type parameter corresponding to recursive occurrences of trees.

13

Type-level fixpoints?

data TreeF t = Leaf
| Node t Int t

Now Tree is not recursive – how can we take compute its fixpoint?

14

Type-level fixpoints

We can compute the fixpoint of a type constructor analogously to the fix function:

fix f = f (fix f)

data Fix f = In (f (Fix f))

Question

What is the kind of Fix?

15

Type-level fixpoints

We can now define trees using our Fix datatype:

data TreeF t = LeafF
| NodeF t Int t

data Fix f = In (f (Fix f))

type Tree = Fix TreeF

The type TreeF is called the pattern functor of trees.

Question

What is the pattern functor for our data type of lambda terms?

16

Type-level fixpoints

This construction works equally well for lists:

data ListF a xs = NilF
| ConsF a xs

data Fix f = In (f (Fix f))

type List a = Fix (ListF a)

Question

Is our type List a the same as [a]?

What does ‘the same’ mean?

17

Type-level fixpoints

This construction works equally well for lists:

data ListF a xs = NilF
| ConsF a xs

data Fix f = In (f (Fix f))

type List a = Fix (ListF a)

Question

Is our type List a the same as [a]?

What does ‘the same’ mean?

17

Type isomorphisms

Two types A and B are isomorphic if we can define functions

f :: A -> B
g :: B -> A

such that

forall (x :: A) . g (f x) = x
forall (x :: B) . f (g x) = x

18

Types Fix (ListF a) and [a] are isomorphic

from :: (Fix (ListF a)) -> [a]
from (In NilF) = []
from (In (ConsF x xs)) = x : from xs

to :: [a] -> Fix (ListF a)
to [] = In NilF
to (x : xs) = In (ConsF x (to xs))

It is relatively easy to see that these are inverses …

19

A single step of recursion

Instead of taking the fixpoint, we can also use the pattern functor to observe a single layer of

recursion.

To do so, we consider the type ListF a [a] – the outermost layer is a NilF or ConsF; any
recursive children are ‘real’ lists.

from :: ListF a [a] -> [a]
from NilF = []
from (ConsF x xs) = x : xs

to :: [a] -> ListF a [a]
to [] = NilF
to (x : xs) = ConsF x xs

Once again, these are inverses.
20

Pattern functors are functors

data ListF a r = NilF | ConsF a r

instance Functor (ListF a) where
fmap f NilF = NilF
fmap f (ConsF x r) = ConsF x (f r)

Mapping over the pattern functor means applying the function to all recursive positions.

This is different from what fmap does on lists, normally!

21

Pattern functors are functors – contd.

data TreeF t = LeafF
| NodeF t Int t

instance Functor TreeF where
fmap f (LeafF) = LeafF
fmap f (NodeF l x r) = NodeF (f l) x (f r)

22

Writing pattern functors

Where these pattern functors give us a good way to describe recursive datatypes – how should we

write them?

Idea

Haskell data types can typically be described as a combination of a small number of primitive

operations.

23

Building pattern functors systematically

Choice between two constructors can be represented using

data (f :+: g) r = L (f r) | R (g r)

Choice between constructors can be represented using multiple applications of (:+:).

Two constructor arguments can be combined using

data (f :*: g) r = f r :*: g r

More than two constructor arguments can be described using multiple applications of (:*:).

24

Building pattern functors systematically – contd.

A recursive call can be represented using

data I r = I r

Constants (such as independent datatypes or type variables) can be represented using

data K a r = K a

Constructors without argument are represented using

data U r = U

25

Example

Our kit of combinators.

data (f :+: g) r = L (f r) | R (g r)
data (f :*: g) r = f r :*: g r
data I r = I r
data K a r = K a
data U r = U

data ListF a r = NilF | ConsF a r
type ListS a = U :+: (K a :*: I)

The types ListS a r and [a] are isomorphic.

All simple data types in Haskell can be described using these five combinators.

26

Excursion: algebraic data types

Haskell’s data types are sometimes referred to as algebraic datatypes.

What does algebraicmean?

Abstract algebra is a branch of mathematics that studies mathematical objects such as monoids,

groups, or rings.

These structures are typically generalizations of familiar sets/operations (such as addition or

multiplication on natural numbers).

If you prove a property of these structures from the axioms, this property for every structure

satisfying the axioms.

27

Excursion: algebraic data types

Haskell’s data types are sometimes referred to as algebraic datatypes.

What does algebraicmean?

Abstract algebra is a branch of mathematics that studies mathematical objects such as monoids,

groups, or rings.

These structures are typically generalizations of familiar sets/operations (such as addition or

multiplication on natural numbers).

If you prove a property of these structures from the axioms, this property for every structure

satisfying the axioms.

27

Algebraic datatypes

The :*: and :+: behave similarly to * and + on numbers; the U type is similar to 1.

For example, for any type t we can show 1 * t is isomorphic to t.

Or for any types t and u, we can show t * u is isomorphic to u * t.

Similarly, t :+: u is isomorphic to u :+: t.

Question

What is the unit of :+:?

28

Recap

So far we have seen how to represent data types using pattern functors, built from a small

number of combinators.

• How can we define generic functions – such as the binary encoding example we saw

previously?

• How can we convert between user-defined data types and their pattern functor

representation?

29

Defining generic functions

We would like to define a function

encode :: f a -> [Bit]

that works on all pattern functors f.

Instead, we’ll define a slight variation:

encode :: (a -> [Bit]) -> f a -> [Bit]

which abstracts over the handling of recursive subtrees.

30

Generic encoding

class Encode f where
fencode :: (a -> [Bit]) -> f a -> [Bit]

instance Encode U where
fencode _ U = []

instance Encode (K Int) where
-- suitable implementation for integers

instance Encode I where
fencode f (I r) = f r

31

Generic encoding – contd.

class Encode f where
fencode :: (a -> [Bit]) -> f a -> [Bit]

instance (Encode f, Encode g) =>
Encode (f :+: g) where
fencode f (L x) = O : fencode f x
fencode f (R x) = I : fencode f x

instance (Encode f, Encode g) =>
Encode (f :*: g) where
fencode f (x :*: y) =
fencode f x ++ fencode f y

32

Where are we now?

Using these instances, we can derive fencode for every pattern functor built up from the functor

combinators.

How does that give us encode for a concrete datatype?

If we have a conversion function

from :: [a] -> ListS a [a]

we can define

encodeList :: [Int] -> [Bit]
encodeList = fencode encodeList . from

33

The Regular class

We can systematically store the isomorphism using a class:

class Regular a where
from :: a -> (PF a) a
to :: PF a a -> a

What is PF?

type family PF a :: * -> *

instance Regular [a] where
from = ...
to = ...

type instance PF [a] = ListS a

34

The Regular class

We can systematically store the isomorphism using a class:

class Regular a where
from :: a -> (PF a) a
to :: PF a a -> a

What is PF?

type family PF a :: * -> *

instance Regular [a] where
from = ...
to = ...

type instance PF [a] = ListS a
34

Generic encode, again

We can write a generic encoding function:

encode :: (Regular a, Encode (PF a)) => a -> [Bit]
encode = fencode encode . from

This works for any regular data type that can be represented as a pattern functor.

35

Who does what?

Generic library

Provides the functor combinators and some other helper functions.

Library

Provides generic functions by defining instances for all the functor combinators.

User

Per datatype, provides an isomorphism with the pattern functor. Can then use all the generic

functions.

36

The regular library

• Available from Hackage.

• Provides generic programming functionality in the style just described.

• Several generic functions are defined, more in regular-extras.

• Can automatically derive the pattern functor and isomorphism for a datatype (using

Template Haskell).

37

Limitations of the approach

• Not all types are regular – nested types, mutually recursive types, GADTs are all not

supported.

• Encoding type parameters via constants is not optimal. We cannot, for example, generically

define the map function over a type parameter using regular.

38

Beyond simple generic functions

This concept of pattern functor gives us the language to study the structure of data structures in

greater detail.

The Foldable class in Haskell is defined as follows:

class Foldable t where
fold :: Monoid m => t m -> m

But not all folds compute monoidal results…

Can we give a more precise account of folds?

39

Folding lists

We have seen the fold on lists many times:

foldr :: (a -> r -> r) -> r -> [a] -> r
foldr op e [] = e
foldr op e (x:xs) = op x (foldr op e xs)

In the other lectures, we saw examples of other folds over natural numbers, trees, etc.

Can we describe this pattern more precisely?

40

Ideas in foldr

• Replace constructors by user-supplied arguments.

• Recursive substructures are replaced by recursive calls.

41

Folding lists – contd.

foldr :: (a -> r -> r) -> r -> [a] -> r

Compare the types of the constructors with the types of the arguments:

(:) :: a -> [a] -> [a]
[] :: a -> [a]

cons :: a -> r -> r
nil :: a -> r

42

Folding other structures

data Nat = Suc Nat | Zero

foldNat :: (r -> r) -> r -> Nat -> r
foldNat s z Zero = z
foldNat s z (Suc n) = s (foldNat s z n)

data Lam = Var Int | App Lam Lam | Abs Lam

foldLam :: (Int -> r) -> (r -> r -> r) -> (r -> r)
-> Lam -> r

foldLam v ap ab (Var n) = v n
foldLam v ap ab (App f a) = ap (foldLam v ap ab f)

(foldLam v ap ab a)
foldLam v ap ab (Abs e) = ab (foldLam v ap ab e)

43

Folding other structures

data Nat = Suc Nat | Zero

foldNat :: (r -> r) -> r -> Nat -> r
foldNat s z Zero = z
foldNat s z (Suc n) = s (foldNat s z n)

data Lam = Var Int | App Lam Lam | Abs Lam

foldLam :: (Int -> r) -> (r -> r -> r) -> (r -> r)
-> Lam -> r

foldLam v ap ab (Var n) = v n
foldLam v ap ab (App f a) = ap (foldLam v ap ab f)

(foldLam v ap ab a)
foldLam v ap ab (Abs e) = ab (foldLam v ap ab e)

43

Catamorphism generically

If we can map over the generic positions, we can express the fold or catamorphism generically:

cata :: (Regular a, Functor (PF a)) =>
(PF a r -> r) -> a -> r

cata phi = phi . fmap (cata phi) . from

The argument describing how to handle each constructor, PF a r -> r, is sometimes called an

algebra.

Question

What about the cata defined over fixpoints?

44

Alternatively

Or using our fixpoint operation on types we can write:

newtype Fix f = In (f (Fix f))

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)

45

Church encodings revisited

Using this definition, we can now give a more precise account of the Church encoding of algebraic

data structures that we saw previously.

The idea behind Church encodings is that we identify:

• a data type (described as the least fixpoint of a functor)

• the fold over this datatype

46

Church encoding: lists

type Church a = forall r . r -> (a -> r -> r) -> r

-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = ...

-- map a list to its fold
to :: [a] -> Church a
to xs = ...

47

Church encoding: lists

type Church a = forall r . r -> (a -> r -> r) -> r

-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = f [] (:)

-- map a list to its fold
to :: [a] -> Church a
to xs = \nil cons -> foldr cons nil xs

48

Generic Church encoding

type Church f = forall r . (f r -> r) -> r

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)

to :: Functor f => Fix f -> Church f
to t = \f -> cata f t

from :: Functor f => Church f -> Fix f
from f = f In

49

Why pattern functors?

The pattern functors give us the right ‘language’ to describe generic constructions over datatypes –

such as Church encodings!

Without having such structure at your disposal, we can study examples (such as the Church

encoding of lists, lambda terms, booleans, and natural numbers) – but there’s no way to describe

the general pattern.

There are many other applications of such pattern functors…

50

Combining datatypes

In Haskell, whenever we define a data type:

data Expr = Val Int | Add Expr Expr

We can add new functions freely:

eval :: Expr -> Int

render :: Expr -> String

But we cannot add new constructors without modifying the datatype and any functions defined

over it.

In object oriented languages, the situation is dual: we can add new subclasses to a class, but

adding new methods requires updating every subclass.

51

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an
old problem. The goal is to define a datatype
by cases, where one can add new cases to the
datatype and new functions over the datatype,
without recompiling existing code, and while
retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?

52

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an
old problem. The goal is to define a datatype
by cases, where one can add new cases to the
datatype and new functions over the datatype,
without recompiling existing code, and while
retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?

52

A naive approach

data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

Question

What is wrong with this approach?

We cannot freely mix addition and multiplication.

53

A naive approach

data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

Question

What is wrong with this approach?

We cannot freely mix addition and multiplication.

53

Solution: work with pattern functors

data AddF a = Val Int | Add a a
data MulF a = Mul a a

data Expr f = In (f (Expr f))
type MyExpr = Expr (AddF :+: MulF)

Problems

• How can we write functions over expressions?

• Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

54

Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And this fixes the possible patterns that we accept.

Idea

Use Haskell’s class system to assemble algebras for us!

55

Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And this fixes the possible patterns that we accept.

Idea

Use Haskell’s class system to assemble algebras for us!

55

Functions over expressions

To define a function over an expression – without knowing the constructors – we introduce a new

type class:

class Eval f where
evalAlg :: f Int -> Int

eval :: Eval f => Expr f -> Int
eval = cata evalAlg

56

Functions over expressions

We can now add instance for all the constructors that we wish to support:

instance Eval AddF where
evalAlg (Add l r) = l + r
evalAlg (Val i) = i

instance Eval MulF where
evalAlg (Mul l r) = l * r

...

57

Functions over expressions

To assemble the desired algebra, however, we need one more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlg x = ...

Question

What should this instance be?

58

Functions over expressions

To assemble the desired algebra, however, we need one more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlg (Inl x) = evalAlg x
evalAlg (Inr y) = evalAlg y

59

The Expression Problem

• How can we write functions over expressions?

• Use type classes

• Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

Idea

Define smart constructors!

60

The Expression Problem

• How can we write functions over expressions?

• Use type classes

• Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

Idea

Define smart constructors!

60

Not so smart constructors

For any fixed pattern functor, we can define auxiliary functions to assemble datatypes:

data AddF a = Val Int | Add a a
type AddExpr = Expr AddF

add :: AddExpr -> AddExpr -> AddExpr
add l r = In (Add l r)

But how can we handle coproducts of pattern functors?

61

Automating injections

To deal with coproducts, we introduce a type class describing how to inject some ‘small’ pattern

functor sub into a larger one sup:

class (:<:) sub sup where
inj :: sub a -> sup a

What instances are there?

62

Instances

class (:<:) sub sup where
inj :: sub a -> sup a

instance (:<:) f f where
inj = ...

instance (:<:) f (f :+: g) where
inj = ...

instance ((:<:) f g) => (:<:) f (h :+: g) where
inj = ...

Question

How should we complete the above definitions?

63

Instances

class (:<:) sub sup where
inj :: sub a -> sup a

instance (:<:) f f where
inj = id

instance (:<:) f (f :+: g) where
inj = Inl

instance ((:<:) f g) => (:<:) f (h :+: g) where
inj = inj . Inr

64

Smart constructors

inject :: ((:<:) g f) => g (Expr f) -> Expr f
inject = In . inj

val :: (AddF :<: f) => Int -> Expr f
val x = inject (Val x)

add :: (AddF :<: f) => Expr f -> Expr f -> Expr f
add x y = inject (Add x y)

mul :: (MulF :<: f) => Expr f -> Expr f -> Expr f
mul x y = inject (Mul x y)

65

Results!

e1 :: Expr AddF
e1 = val 1 `add` val 2

v1 :: Int
v1 = eval e1

e2 :: Expr (MulF :+: AddF)
e2 = val 1 `mul` (val 2 `add` val 3)

v2 :: Int
v2 = eval e2

66

Extensibility

We can easily add new constructors:

data SubF a = SubF a a

type NewExpr = SubF :+: MulF :+: AddF

Or define new functions:

class Render f where
render :: f String -> String

67

General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:

class Render f where
render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive pattern functors (Expr f) to be the

same.

68

General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:

class Render f where
render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive pattern functors (Expr f) to be the

same.

68

Generalizing

A more general type seems better:

class Render f where
render :: f (Expr g) -> String

We can try to define an instance:

instance Render Mul where
render :: Mul (Expr g) -> String
render (Mul l r) = ...

Question How can we complete this instance?

We cannot make a recursive call! We don’t know that the pattern functor g can be rendered.

69

Generalizing

A more general type seems better:

class Render f where
render :: f (Expr g) -> String

We can try to define an instance:

instance Render Mul where
render :: Mul (Expr g) -> String
render (Mul l r) = ...

Question How can we complete this instance?

We cannot make a recursive call! We don’t know that the pattern functor g can be rendered.

69

General recursion

class Render f where
render :: Render g => f (Expr g) -> String

instance Render Mul where
render :: Mul (Expr g) -> String
render (Mul l r) = renderExpr l

++ " * "
++ renderExpr r

renderExpr :: Render f => Expr f -> String
renderExpr (In t) = render t

70

Combining monads?

The :+: operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?

That is, if m1 and m2 are monads, can we construct a monad m1 :+: m2?

The paper ‘Composing Monads Using Coproducts’ explores this idea.

This construction works, but does not account for the ‘interaction’ between m1 and m2.

Yet there is a class of monads for which this construction does work.

71

Combining monads?

The :+: operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?

That is, if m1 and m2 are monads, can we construct a monad m1 :+: m2?

The paper ‘Composing Monads Using Coproducts’ explores this idea.

This construction works, but does not account for the ‘interaction’ between m1 and m2.

Yet there is a class of monads for which this construction does work.

71

Get-Put

In the labs, we saw the following data type:

data Teletype a =
Get (Char -> Teletype a)
| Put Char (Teletype a)
| Return a

instance Monad Teletype where
...

Can we describe this using pattern functors?

72

Using pattern functors

data TeletypeF r =
Get (Char -> r)
| Put Char r

data Teletype a =
In (TeletypeF (Teletype a))
| Return a

73

Free monads

We can capture this pattern as a so-called free monad:

data Free f a =
In (f (Free f a))
| Return a

For any functor f this definition is a monad.

Question

Why? What other familiar monads are free?

74

instance (Functor f) => Monad (Free f) where
return x = Return x
(Return x) >>= f = f x
(In t) >>= f = In (fmap (>>= f) t)

75

Combining monads

Using the same machinery we saw previously, we can combine free monads in a uniform fashion.

data FileSystem a =
ReadFile FilePath (String -> a)

| WriteFile FilePath String a

class Functor f => Exec f where
execAlgebra :: f (IO a) -> IO a

cat :: FilePath -> Free (Teletype :+: FileSystem) ()

This gives us a more fine-grained collection of effects that can all be run in the IO monad.

76

Efficiency?

Repeatedly applying the bind of a free monad is not very efficient…

It is a bit similar to repeatedly appending two lists:

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

This is quadratic…

77

Efficiency: reversing lists

We can represent lists as a function (sometimes referred to as a difference lists):

type DList a = [a] -> [a]

toList :: DList a -> [a]
toList f = f []

fromList :: [a] -> DList a
fromList xs = \ys -> xs ++ ys

78

Question

How can we define reverse using difference lists?

Instead of repeatedly traversing the list to insert an element at the end, we can construct a single

computation that returns the new list.

reverse :: [a] -> [a]
reverse xs = toList (go xs)

where
go :: [a] -> DList a
go [] = \xs -> xs
go (x:xs) = \ys -> go xs $ x:ys

79

Question

How can we define reverse using difference lists?

Instead of repeatedly traversing the list to insert an element at the end, we can construct a single

computation that returns the new list.

reverse :: [a] -> [a]
reverse xs = toList (go xs)
where
go :: [a] -> DList a
go [] = \xs -> xs
go (x:xs) = \ys -> go xs $ x:ys

79

Efficient bind?

We can repeat this trick to optimize the bind of monads:

newtype Codensity m a = Codensity
{ runCodensity :: forall b. (a -> m b) -> m b
}

The resulting monad is sometimes referred to as the Codensity monad.

The paper ‘Asymptotic Improvement of Computations over Free Monads’ by Janis Voigtlander

shows how to use this definition to speed up computations over free monads.

80

Recap

• Pattern functors give us the mathematical machinery to describe and recursive datatypes.

• As a result, we can define generic functions (such as encode) and patterns of recursion

(cata);

• Understanding pattern functors lets us express the relation between data types and their

folds – Church encodings.

• We can use Haskell’s type classes to assemble modular datatypes and functions!

81

More than just functions…

So far we have seen examples of generic functions, i.e., a function defined by induction on the

structure of its types.

But what about defining new datatypes in this style?

82

Example: the zipper

data Tree a =
Leaf | Node (Tree a) a (Tree a)

type Nav a = ...
makeNav :: Tree a -> Nav a
up :: Nav a -> Nav a
current :: Nav a -> Tree a
...

How can I designate a position in this tree?

How can I move my cursor through the data structure?

(I’ll be a bit sloppy about operations that may fail)

83

Inefficient solution

-- Maintain a path from the root
data Dir = Left | Right
type Position = [Dir]

type Zipper = (Tree a, Position)

up :: Zipper -> Zipper
left :: Zipper -> Zipper
right :: Zipper -> Zipper

up (t,ps) = (t, init ps)
left (t,ps) = (t, ps `snoc` Left)
right (t,ps) = (t, ps `snoc` Right)

84

Inefficient solution

-- Maintain a path from the root
data Dir = Left | Right
type Position = [Dir]

type Zipper = (Tree a, Position)

up :: Zipper -> Zipper
left :: Zipper -> Zipper
right :: Zipper -> Zipper

up (t,ps) = (t, init ps)
left (t,ps) = (t, ps `snoc` Left)
right (t,ps) = (t, ps `snoc` Right)

84

Inefficient solution

data Dir = Left | Right
type Position = [Dir]

type Zipper = (Tree a, Position)

current :: Zipper -> Tree
current (t , []) = t
current (Node l r, Left : ps) = current l ps
current (Node l r, Right : ps) = current r ps

85

Inefficient solution

The problem is that we are constantly traversing the entire path to add new elements or lookup

the current element.

This is undesirable…

Can we do better?

Idea

Instead of maintaining the path from the route, keep track of all the subtrees you have

encountered so far in a special purpose datatype.

86

Inefficient solution

The problem is that we are constantly traversing the entire path to add new elements or lookup

the current element.

This is undesirable…

Can we do better?

Idea

Instead of maintaining the path from the route, keep track of all the subtrees you have

encountered so far in a special purpose datatype.

86

Zippers

data Ctx a = Empty
| Left (Ctx a) a (Tree a)
| Right (Tree a) a (Ctx a)

type Zipper a = (Ctx a, Tree a)

87

Navigating with zippers

left :: Zipper a -> Zipper a
left (ctx, Node l x r) = (Left ctx x r, l)

right :: Zipper a -> Zipper
right (ctx, Node l x r) = (Right l x ctx, r)

up :: Zipper a -> Zipper a
up (Left ctx a r, l) = (ctx, Node l a r)
up (Right l a ctx, r) = (ctx, Node l a r)

current :: Zipper a -> Tree a
current (ctx, t) = t

88

Recap

Our Ctx datatype is an incomplete Tree, missing the current subtree under focus.

As the data we need to navigate is available immediately, we can move around through our tree in

O(1) time.

But does this work for other data types?

89

Generic contexts

We can define a generic definition of zipper contexts:

• For recursive positions I, there is a single possible subtree.

• For constants K a and U, there is no possible designated subtree.

• Given a choice f :+: g, we can designate a subtree in either f or g.

• Given a pair f :*: g:
• designate a subtree in f and pair it with g
• or designate a subtree in g and pair it with f

These are very similar to the rules for differentiation!

90

Generic contexts

We can define a generic definition of zipper contexts:

• For recursive positions I, there is a single possible subtree.

• For constants K a and U, there is no possible designated subtree.

• Given a choice f :+: g, we can designate a subtree in either f or g.

• Given a pair f :*: g:
• designate a subtree in f and pair it with g
• or designate a subtree in g and pair it with f

These are very similar to the rules for differentiation!

90

Generic contexts

The generic zipper is a standard example of a type-indexed datatype.

There are several other such examples: such as generic tries/dictionaries.

The type-indexed datatypes can typically be defined as an associated type in the type class defining

the generic functions that the zipper supports.

91

Other approaches

There are many generic programming frameworks.

They take different views on the structure of Haskell datatypes and have slightly different

strengths and weaknesses.

Some other approaches:

• Scrap your boilerplate (syb)

• Uniplate

• instant-generics

• multirec

• Template Haskell

92

Generics in practice

One point we glossed over in the discussion about the regular library is how to convert between

our representation type and user-written datatypes.

We can automate this using Template Haskell:

• inspect the datatype definition;

• generate the corresponding to and from functions.

This works – but requires some programming work – especially if you’re writing your own generic

programming library.

93

GHC.Generics

GHC now ships with a built-in library for writing generic functions GHC.Generics.

This handles all the conversions between representations for you.

It also exposes a great deal of meta-information such as:

• data type names;

• constructor names;

• field projections;

• …

94

Recap

Datatype generic programming lets us exploit the structure of our datatypes to generate new

functions and types.

95

Further information

• The Haskell wiki

• www.haskell.org/haskellwiki/Generics

• www.haskell.org/haskellwiki/GHC.Generics

• A Generic Deriving Mechanism for Haskell by Magalhães et al.

• Data types a la carte by Wouter Swierstra;

• Type-indexed data types by Jeuring, Loeh, and Hinze.

96

Agda

Agda is a dependently typed programming language and proof assistant.

Don’t worry if you don’t understand these words just yet…

I’ll try to introduce Agda through a series of live coding sessions.

Be sure to follow along – I’ll add links to the website with further reading.

97

Introduction to Agda

We will (roughly) follow the tutorial by Ulf Norell and James Chapman:

http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf

There’s a lot more information on the Agda wiki

http://wiki.portal.chalmers.se/agda/pmwiki.php

Including a list of Agda keyboard shortcuts, guide to writing Unicode characters, etc.

98

http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
http://wiki.portal.chalmers.se/agda/pmwiki.php

Installing Agda

The very brief version:

1. Make sure you have Emacs (or VS Code?) installed;

2. cabal update

3. cabal install Agda

4. agda-mode setup

This may not work – let me know if you need help.

99

Demo

100

