
Advanced functional programming
Agda I – Introduction

Paige Randall North
13 March 2024

Utrecht University

1



Background

2



Haskell vs Agda

Haskell:

• simply-typed lambda calculus
• with support for partial functions / nontermination

(undefined)

Agda:

• dependently-typed lambda calculus
• with requirement that every function is total / every

computation terminates

3



Haskell vs Agda

Haskell:

• simply-typed lambda calculus
• with support for partial functions / nontermination

(undefined)

Agda:

• dependently-typed lambda calculus
• with requirement that every function is total / every

computation terminates

3



Similar languages

Theoretical:

• Martin-Löf type theory (1970s)
• Calculus of constructions (1980s)
• ...

Implemented:

• Coq (1989)
• Agda (2007)
• Lean (2013)
• ...

4



Proof assistants

Agda (and Coq, Lean) is not only a language but a proof
assistant (also called an interactive theorem prover).

That means that the editor includes more assistance for writing a
program/proof than usual.

5



Dependent types

6



Dependent types

In a simply typed language like Haskell, the input to functions
can only be terms (in Haskell, values).

I.e.: functions go from types to types.

not :: bool -> bool

There are also kinds in Haskell.

[] :: * -> *

But Haskell keeps kinds and types separate.

7



Dependent types

In a simply typed language like Haskell, the input to functions
can only be terms (in Haskell, values).

I.e.: functions go from types to types.

not :: bool -> bool

There are also kinds in Haskell.

[] :: * -> *

But Haskell keeps kinds and types separate.

7



Dependent types

In a dependent type theory, we do not keep kinds and types
separate.1

Kinds are also types, and so they can be combined.

divisors :: Nat -> *

(In Agda, we write Set instead of * and : instead of ::.)

There is a lot of effort to add this functionality to Haskell, e.g.
DataKinds.

1Technically, there is a universe hierarchy to prevent paradoxes.

8



Dependent types

In a dependent type theory, we do not keep kinds and types
separate.1

Kinds are also types, and so they can be combined.

divisors : Nat -> Set

(In Agda, we write Set instead of * and : instead of ::.)

There is a lot of effort to add this functionality to Haskell, e.g.
DataKinds.

1Technically, there is a universe hierarchy to prevent paradoxes.

8



An important dependent type

We can consider the function

f: Set -> Set
f A = A -> A -> Set

If we want to consider a ‘polymorphic’ term of this type, i.e. a
function that takes in an A : Set and returns an A -> A ->
Set, we write it as:

? : (A : Set) -> f A

or

? : (A : Set) -> A -> A -> Set

This is called a dependent function.

9



An important dependent type

My favorite dependent type (defined inductively) is

≡ : (A : Set) -> A -> A -> Set

Now we can write the type of functors in Agda as
record Fun : Set where

field
F0 : Set -> Set
F1 : {A B : Set} -> {A -> B} -> F0 A -> F0 B
id law : {A : Set} -> F1 (id A) ≡ id (F1 A)
comp law : {A B C : Set} -> {f : A -> B} -> {g : B -> C}

-> F1 g.f ≡ (F1 g).(F1 f)

A term of Fun is then a functor satisfying the functor laws.

10



Why dependent types

In general, types correspond to program specifications.2

A term is a program meeting the specification.

Dependent types allow us to write programs that are
correct-by-construction.

2See Curry-Howard correspondence, Brouwer–Heyting–Kolmogorov
interpretation, proofs-as-programs.

11



Why dependent types

In general, types correspond to program specifications.2

A term is a program meeting the specification.

Dependent types allow us to write programs that are
correct-by-construction.

2See Curry-Howard correspondence, Brouwer–Heyting–Kolmogorov
interpretation, proofs-as-programs.

11



Program extraction

Once you have a term of type Fun, you can extract the
underlying program (i.e., erase the correctness proofs).

You can extract Agda programs/proofs to Haskell or JavaScript.

12



Termination

13



Termination

Every program is Agda terminates.

Equivalently, every function is total.

This is because our programs are often proofs

e.g.: id law : {A : Set} -> F1 (id A) ≡ id (F1 A)

and we expect id law to be defined at each A : Set.

14



Simulating nontermination

We can of course simulate nontermination by using the Maybe
monad (or more purpose-built solutions), as in Haskell.

15



Useful info

16



Useful info

Installation

• Official Agda installation instructions
• I am using VS Code with the agda-mode extension and its

Agda language server.

Resources

• Dependently Typed Programming in Agda by Ulf Norell
and James Chapman

• CS410 Advanced Functional Programming at Strathclyde,
by Fredrik Nordvall Forsberg

17

https://agda.readthedocs.io/en/latest/getting-started/installation.html
https://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
https://github.com/fredrikNordvallForsberg/CS410-22


Questions?

17


