
Logic for Computer Science

01 – Intro

Wouter Swierstra

Utrecht University

1



Today

• Organisation

• What is logic?

• Why logic?

2



Organisation

3



Logic for computer science

Lecturers: Wouter Swierstra (until Christmas) & Paige Randall North (after Christmas)

Tutorial sessions: In person practice sessions are split over nine different groups. These are not

mandatory – but I hope you find them useful.

You should have been allocated to a group in MyTimetable.

The first werkcollege is Thursday after the lecture.

Additional support: through MS teams chat - check the Blackboard page for the invitation code.

Quizzes: weekly quizzes to help you keep up.

4



Website

Al the practical information about the course can be found on the website:

https://ics.uu.nl/docs/vakken/b1li/

Check the website and monitor the General Teams channel regularly!

Note: there is no (meaningful content on the) Blackboard page.

I’ll add updates regularly:

• Latest news

• Slides from the lectures will be available for download from the course website

• Updates to the schedule

• Exercises for the practicals & additional exercises

• New literature and links

5

https://ics.uu.nl/docs/vakken/b1li/


Website

Al the practical information about the course can be found on the website:

https://ics.uu.nl/docs/vakken/b1li/

Check the website and monitor the General Teams channel regularly!

Note: there is no (meaningful content on the) Blackboard page.

I’ll add updates regularly:

• Latest news

• Slides from the lectures will be available for download from the course website

• Updates to the schedule

• Exercises for the practicals & additional exercises

• New literature and links

5

https://ics.uu.nl/docs/vakken/b1li/


Website

Al the practical information about the course can be found on the website:

https://ics.uu.nl/docs/vakken/b1li/

Check the website and monitor the General Teams channel regularly!

Note: there is no (meaningful content on the) Blackboard page.

I’ll add updates regularly:

• Latest news

• Slides from the lectures will be available for download from the course website

• Updates to the schedule

• Exercises for the practicals & additional exercises

• New literature and links

5

https://ics.uu.nl/docs/vakken/b1li/


English vs Nederlands?

I’ll be teaching the lectures in Dutch; Paige will teach in English.

• The book is in English. So are the slides.

• Not all of the supervisors teaching exercises sessions speak Dutch.

• MSc students taking this course as a deficiency or exchange students do not necessarily

speak Dutch.

Hopelijk leidt dit niet tot al te veel verwarring!

6



English vs Nederlands?

I’ll be teaching the lectures in Dutch; Paige will teach in English.

• The book is in English. So are the slides.

• Not all of the supervisors teaching exercises sessions speak Dutch.

• MSc students taking this course as a deficiency or exchange students do not necessarily

speak Dutch.

Hopelijk leidt dit niet tot al te veel verwarring!

6



Book

Modelling Computing Systems: Mathematics for Computer Science; Moller and Struth

De .pdf version is available for download via the library for free.

But it may still be worth buying a paper copy, if you prefer.

We’ve collected a list of errata - linked from the website. Please let us know if you spot a mistake!

7



Lecture notes

In addition to the book, I have a short set of lecture notes available for download from the website.

We will use these for the last few lectures.

There is a github repository – please open an issue or submit a pull request if you have any

suggestions for improvement!

https://github.com/wouter-swierstra/logic-notes

8

https://github.com/wouter-swierstra/logic-notes


Lectures (colleges) & practicals (werkcolleges) & quiz

• 2 lectures and 2 practical sessions per week

• Tuesday 13:15 – 15:00 college

• Tuesday 15:15 – 17:00 werkcollege

• Thursday 09:00 – 10:45 college

• Thursday 11:00 – 13:00 werkcollege

• The first werkcollege will be Thursday morning.

• Starting next week, each Tuesday there will be a quiz to be completed online in Remindo.

9



Quizzes

10% of your final mark will be determined by a weekly online quiz to be completed in Remindo.

This quiz will be held each Tuesday from 16:00–16:30.

They can be completed on campus or at home.

The tests serve as a check – for you and me both – to measure your understanding of the material.

After each (closed) question, you will receive feedback on your answer.

A model solution for each open question will be discussed in the practical session.

I strongly recommend studying the relevant material practicing exercises before taking the test.

10



Quizzes

10% of your final mark will be determined by a weekly online quiz to be completed in Remindo.

This quiz will be held each Tuesday from 16:00–16:30.

They can be completed on campus or at home.

The tests serve as a check – for you and me both – to measure your understanding of the material.

After each (closed) question, you will receive feedback on your answer.

A model solution for each open question will be discussed in the practical session.

I strongly recommend studying the relevant material practicing exercises before taking the test.

10



Quiz ground rules

• The quizzes are ‘open book’ – this creates a level playing field for those students doing the

exam at home or in class.

• You are forbidden from using AI support when submitting your work. (The solutions systems

like ChatGPT generate are not very good, glossing over the key proof steps.)

• I expect you do work on the test individually – any sharing of answers or discussion of the

questions well be labelled as fraud and handled accordingly.

• There will not be a resit opportunity for quizzes.

These quizzes are there to help you keep up.

If you find yourself unable to answer the questions, constantly looking through the book, or

struggling to understand what the question is about – you need to catch up now.

Once you are behind, the lectures stop making sense — it’s all too easy to drop out entirely.

11



Quiz ground rules

• The quizzes are ‘open book’ – this creates a level playing field for those students doing the

exam at home or in class.

• You are forbidden from using AI support when submitting your work. (The solutions systems

like ChatGPT generate are not very good, glossing over the key proof steps.)

• I expect you do work on the test individually – any sharing of answers or discussion of the

questions well be labelled as fraud and handled accordingly.

• There will not be a resit opportunity for quizzes.

These quizzes are there to help you keep up.

If you find yourself unable to answer the questions, constantly looking through the book, or

struggling to understand what the question is about – you need to catch up now.

Once you are behind, the lectures stop making sense — it’s all too easy to drop out entirely.

11



Final mark

• The average of the six out of seven best quiz scores (10%)

• Mid-term (40%)

• Final exam (50%)

• There will be a resit opportunity (herkansing) – provided your final mark is at least a 4.0.

There is no opportunity to resit quizzes. Missing one will not effect your mark.

12



Exams

The midterm exam and final exam will be digital.

The questions will be a mix of open and closed questions.

I may choose to ask you to answer some questions on a separate piece of paper.

13



How do I pass this course?

14



How do I pass this course? Lectures / hoorcolleges

It sounds obvious – but you can do a great deal to make sure you pass the course in one go:

• Read through the book before the lecture – what is today’s lecture about?

• Come to every lecture – and ask questions when you don’t understand something!

• Read the material at home carefully. Are you sure you understand everything?

15



How do I pass this course? Lectures / hoorcolleges

It sounds obvious – but you can do a great deal to make sure you pass the course in one go:

• Read through the book before the lecture – what is today’s lecture about?

• Come to every lecture – and ask questions when you don’t understand something!

• Read the material at home carefully. Are you sure you understand everything?

15



How do I pass this course? Lectures / hoorcolleges

It sounds obvious – but you can do a great deal to make sure you pass the course in one go:

• Read through the book before the lecture – what is today’s lecture about?

• Come to every lecture – and ask questions when you don’t understand something!

• Read the material at home carefully. Are you sure you understand everything?

15



How do I pass this course? Lectures / hoorcolleges

It sounds obvious – but you can do a great deal to make sure you pass the course in one go:

• Read through the book before the lecture – what is today’s lecture about?

• Come to every lecture – and ask questions when you don’t understand something!

• Read the material at home carefully. Are you sure you understand everything?

15



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Practice sessions / werkcolleges

• Look at the material and exercises before each practice session.

• What did you find difficult? What don’t you understand? Try to prepare questions to

articulate where you struggled.

• Try to do the exercises on your own before the practice sessions. It’s OK to get stuck – what

help do you need to get unstuck?

• Ask questions to the TAs and your fellow students, if you get stuck.

• Do all the exercises that I list.

• Check your solutions and discuss with your work with your peers.

16



How do I pass this course? Quizzes and exams

• Come to the exams and quizzes prepared. Show that you’ve mastered all the material.

• The closed questions on the quizzes give you feedback about your work – including

definitions that you may have misunderstood and sections of the book you should reread.

• The open questions will be discussed in class with the TAs. There can be more than one

correct answer!

• It’s OK to mess up the quizzes – but learn from your mistakes.

17



How do I pass this course? Quizzes and exams

• Come to the exams and quizzes prepared. Show that you’ve mastered all the material.

• The closed questions on the quizzes give you feedback about your work – including

definitions that you may have misunderstood and sections of the book you should reread.

• The open questions will be discussed in class with the TAs. There can be more than one

correct answer!

• It’s OK to mess up the quizzes – but learn from your mistakes.

17



How do I pass this course? Quizzes and exams

• Come to the exams and quizzes prepared. Show that you’ve mastered all the material.

• The closed questions on the quizzes give you feedback about your work – including

definitions that you may have misunderstood and sections of the book you should reread.

• The open questions will be discussed in class with the TAs. There can be more than one

correct answer!

• It’s OK to mess up the quizzes – but learn from your mistakes.

17



How do I pass this course? Quizzes and exams

• Come to the exams and quizzes prepared. Show that you’ve mastered all the material.

• The closed questions on the quizzes give you feedback about your work – including

definitions that you may have misunderstood and sections of the book you should reread.

• The open questions will be discussed in class with the TAs. There can be more than one

correct answer!

• It’s OK to mess up the quizzes – but learn from your mistakes.

17



How do I pass this course? Quizzes and exams

• Come to the exams and quizzes prepared. Show that you’ve mastered all the material.

• The closed questions on the quizzes give you feedback about your work – including

definitions that you may have misunderstood and sections of the book you should reread.

• The open questions will be discussed in class with the TAs. There can be more than one

correct answer!

• It’s OK to mess up the quizzes – but learn from your mistakes.

17



Common mistakes that lead to you failing the course

The first lecture is easy; the second one isn’t much harder.

But after 2-3 weeks, the material grows complex quite quickly.

And it gets harder and harder to catch up, once you fall behind.

The pace of new material is much higher than in high school.

The material is more abstract than Imperatief Programming or Computerachitectuur en netwerken.

Try to keep up!

18



Common mistakes that lead to you failing the course

The first lecture is easy; the second one isn’t much harder.

But after 2-3 weeks, the material grows complex quite quickly.

And it gets harder and harder to catch up, once you fall behind.

The pace of new material is much higher than in high school.

The material is more abstract than Imperatief Programming or Computerachitectuur en netwerken.

Try to keep up!

18



Common mistakes that lead to you failing the course

The first lecture is easy; the second one isn’t much harder.

But after 2-3 weeks, the material grows complex quite quickly.

And it gets harder and harder to catch up, once you fall behind.

The pace of new material is much higher than in high school.

The material is more abstract than Imperatief Programming or Computerachitectuur en netwerken.

Try to keep up!

18



Common mistakes that lead to you failing the course

There are solutions to (almost) all exercises available in the book.

If you get stuck, just check the solution!

Wrong! Getting stuck is part of learning.

It’s easy to get stuck, check the solution, see that it makes sense and move on.

This learning strategy may work fine in high school.

But the questions on the exam don’t come with solutions! You need to learn how to tackle

problems yourself.

Once you’re satisfied with your answer, check the solutions.

The TAs are here to help you get unstuck (without giving away the whole answer); or take a step

back and think deeply about the problem.

19



Common mistakes that lead to you failing the course

There are solutions to (almost) all exercises available in the book.

If you get stuck, just check the solution!

Wrong! Getting stuck is part of learning.

It’s easy to get stuck, check the solution, see that it makes sense and move on.

This learning strategy may work fine in high school.

But the questions on the exam don’t come with solutions! You need to learn how to tackle

problems yourself.

Once you’re satisfied with your answer, check the solutions.

The TAs are here to help you get unstuck (without giving away the whole answer); or take a step

back and think deeply about the problem.

19



Common mistakes that lead to you failing the course

There are solutions to (almost) all exercises available in the book.

If you get stuck, just check the solution!

Wrong! Getting stuck is part of learning.

It’s easy to get stuck, check the solution, see that it makes sense and move on.

This learning strategy may work fine in high school.

But the questions on the exam don’t come with solutions! You need to learn how to tackle

problems yourself.

Once you’re satisfied with your answer, check the solutions.

The TAs are here to help you get unstuck (without giving away the whole answer); or take a step

back and think deeply about the problem.

19



Don’t take it fromme…

20



What is logic?

21



What is logic?

Question: what is a proof?

22



Logic for computer science

Logic studies the rules of deduction – given certain assumptions, what can we conclusions can we

draw from them?

By making these rules precise, we can objectively determine if a given statement follows from its

assumptions or not.

23



In summary…

24



Abstraction

When studying logic, we need to be very precise.

Unfortunately, natural languages – such as English or Dutch – are not suitable.

Natural languages are full of ambiguity. Consider a sentence such as:

I saw a man on a hill with a telescope.

It’s obvious what it means, right?

There are many different interpretations:

There’s a man on a hill, and I’m watching him with my telescope.

There’s a man, and he’s on a hill that also has a telescope on it.

I’m on a hill, and I saw a man using a telescope.

...

25



Abstraction

When studying logic, we need to be very precise.

Unfortunately, natural languages – such as English or Dutch – are not suitable.

Natural languages are full of ambiguity. Consider a sentence such as:

I saw a man on a hill with a telescope.

It’s obvious what it means, right?

There are many different interpretations:

There’s a man on a hill, and I’m watching him with my telescope.

There’s a man, and he’s on a hill that also has a telescope on it.

I’m on a hill, and I saw a man using a telescope.

...

25



Abstraction

Open up the book – it’s full of mathematical formulas.

To be precise in our reasoning, we sometimes need to work on a more abstract level.

As part of this course, this means developing a language of logic with a precise meaning that we

can use to communicate unambiguously.

We’ll study the structure of proofs, independently of the details to the statements and

propositions involved.

We will often circle back, making previous material more precise once you have the mathematical

expertise to do so.

26



Abstraction

Open up the book – it’s full of mathematical formulas.

To be precise in our reasoning, we sometimes need to work on a more abstract level.

As part of this course, this means developing a language of logic with a precise meaning that we

can use to communicate unambiguously.

We’ll study the structure of proofs, independently of the details to the statements and

propositions involved.

We will often circle back, making previous material more precise once you have the mathematical

expertise to do so.

26



Abstraction

A common theme in computer science is to leave out the details that don’t matter for the problem

at hand.

Analogy: different maps serve different purposes:

• a map to the subway system is useful for planning how to get from one station to another;

• an atlas is useful for studying countries and their geography.

• an street map is useful for finding your way in an unknown city.

Each of these maps leave out certain details and serve a different purpose.

They are all an abstraction of reality.

27



Applications

Just because the logic we will study is abstract, doesn’t mean there are no applications. Logical

deductions pop up over and over again in computer science: . . .

• This method will always return a result greater than 0 because…

• The requirements described by our end-user are impossible to fulfill because…

• The bug must be in this class because…

28



Applications

Just because the logic we will study is abstract, doesn’t mean there are no applications. Logical

deductions pop up over and over again in computer science: . . .

• This method will always return a result greater than 0 because…

• The requirements described by our end-user are impossible to fulfill because…

• The bug must be in this class because…

28



Applications

Just because the logic we will study is abstract, doesn’t mean there are no applications. Logical

deductions pop up over and over again in computer science: . . .

• This method will always return a result greater than 0 because…

• The requirements described by our end-user are impossible to fulfill because…

• The bug must be in this class because…

28



Modeling computing systems

Amodel is some abstraction of reality that makes it tractable to study.

For example, in high school we often teach the Newtonian model of physics—even if many other

models exist that may be more accurate at times.

The mathematics we’ll study in this course can be used specifically to model computer programs,

or more generally, any system that processes and communicates information.

With a model of computer systems, we can study and predict a system’s behaviour, functionality,

or performance – in the same way physics can predict the behaviour of billiard balls on a pool

table.

29



Program verification

• Specification – an abstract description of what a program must do;

• Implementation – a program that (presumably) exhibits the behaviour desired by the

specification;

• Verification – a proof that an implementation adheres to its specification.

During this course we will study the mathematics that makes such verification possible.

30



Logic for computer science

The name of this course – Logic for computer science – suggests that there are other logic courses

taught at the university:

Question

In what other degrees might you find such a course?

• In Mathematics – is this proof valid?

• In Philosophy – is this argument valid?

• In Language – what is the meaning of this sentence?

• In Law – what is the correct legal decision?

And possibly many others…

31



Logic for computer science

The name of this course – Logic for computer science – suggests that there are other logic courses

taught at the university:

Question

In what other degrees might you find such a course?

• In Mathematics – is this proof valid?

• In Philosophy – is this argument valid?

• In Language – what is the meaning of this sentence?

• In Law – what is the correct legal decision?

And possibly many others…

31



What is logic?

Logic studies the rules of deduction – given certain assumptions, what can we conclusions can we

draw from them?

By making these rules precise, we can objectively determine if a given statement folllows from its

assumptions or not.

32



What is a proof? And what isn’t?

33



Example: tiling a bathroom

Suppose we need to tile the bathroom above with tiles of size 2x1.

Question

Can we tile this bathroom without breaking or cutting a single tile?

34



Example: tiling a bathroom

It seems very hard to do…

To prove that it can be done, it suffices to find a single succesful tiling.

But how could we possibly prove that it is not possible?

• We could list every possible tiling and check them one by one, to see that they leave some

squares untiled.

But there are far too many! It’s boring and intractable to do this by hand.

Can’t we come up with a better idea?

35



Example: tiling a bathroom

It seems very hard to do…

To prove that it can be done, it suffices to find a single succesful tiling.

But how could we possibly prove that it is not possible?

• We could list every possible tiling and check them one by one, to see that they leave some

squares untiled.

But there are far too many! It’s boring and intractable to do this by hand.

Can’t we come up with a better idea?

35



Example: tiling a bathroom

It seems very hard to do…

To prove that it can be done, it suffices to find a single succesful tiling.

But how could we possibly prove that it is not possible?

• We could list every possible tiling and check them one by one, to see that they leave some

squares untiled.

But there are far too many! It’s boring and intractable to do this by hand.

Can’t we come up with a better idea?

35



Example: tiling a bathroom

Let’s colour the bathroom as a chessboard, alternating between black and white squares.

Note: there are more ‘black squares’ (18) than there are ‘white squares’ (16).

However we place the first tile, we cover one black and one white square.

But this is also true of the second tile. And the third…

In the end, there will always be two black squares untiled.

36



Example: tiling a bathroom

Let’s colour the bathroom as a chessboard, alternating between black and white squares.

Note: there are more ‘black squares’ (18) than there are ‘white squares’ (16).

However we place the first tile, we cover one black and one white square.

But this is also true of the second tile. And the third…

In the end, there will always be two black squares untiled.

36



Example: tiling a bathroom

Let’s colour the bathroom as a chessboard, alternating between black and white squares.

Note: there are more ‘black squares’ (18) than there are ‘white squares’ (16).

However we place the first tile, we cover one black and one white square.

But this is also true of the second tile. And the third…

In the end, there will always be two black squares untiled.

36



Example: tiling a bathroom

Let’s colour the bathroom as a chessboard, alternating between black and white squares.

Note: there are more ‘black squares’ (18) than there are ‘white squares’ (16).

However we place the first tile, we cover one black and one white square.

But this is also true of the second tile. And the third…

In the end, there will always be two black squares untiled.

36



Example: tiling a bathroom

Why show this ‘proof’?

I’m not expecting any of you retile your bathroom with this particular constraints any time soon.

But this proof shows how to prove that something can never happen – which is not how we

typically think.

Finding such insights is part of what makes computer science fun!

And translating such insights to a precise proof is exactly what this course is about.

37



Invariants

The argument we made was mathematically interesting:

• We made a statement about the number of white tiles and black tiles initially.

• We showed that the statement remaind true regardless of the next tile that is placed

Such a statement is sometimes called an invariant

This is particularly useful when reasoning about a computer program’s behaviour, where

regardless of the user’s input, the exact data in memory or on disk, or the exact execution trace of

a program, a certain property must hold.

38



Example: chocolate bar

Here is a 3x6 chocolate bar. I can break it along any line in the usual fashion. What is the least

number of times I need to break it in order to end up with 18 individual pieces to share among my

friends? (I am not strong enough to break two parts of the chocolate bar at the same.)

Question

What is the best strategy for breaking the chocolate bar? How many times will I need to break it?

39



Example: chocolate bar

Initially, we have 1 piece of chocolate after 0 cuts.

40



Example: chocolate bar

After the first cut, we have 2 pieces.

41



Example: chocolate bar

After the second cut, we have 3 pieces.

42



Example: chocolate bar

After n cuts, we have n + 1 pieces.

With 17 cuts, we’ll break the chocolate bar into 18 pieces.

Another example of an invariant.

43



Back to computer programs

But what do these examples have to do with programming?

Let’s study one last example of an invariant…

44



Greatest common divisor

When working with fractions, we usually want to simplify them, writing 3
5 rather than 15

25 .

How can we write a computer program that, given two numbers x and y, computes the simplified

fraction of corresponding to x
y ?

One way to do so is to compute the greatest common divisor (or gcd) of both x and y, and then

return the fraction

x ÷ gcd(x, y)
y ÷ gcd(x, y)

In our example, gcd(15, 25) should return 5; hence we can simplify 15
25 to 3

5 .

45



Greatest common divisor

When working with fractions, we usually want to simplify them, writing 3
5 rather than 15

25 .

How can we write a computer program that, given two numbers x and y, computes the simplified

fraction of corresponding to x
y ?

One way to do so is to compute the greatest common divisor (or gcd) of both x and y, and then

return the fraction

x ÷ gcd(x, y)
y ÷ gcd(x, y)

In our example, gcd(15, 25) should return 5; hence we can simplify 15
25 to 3

5 .

45



Examples

• gcd(12, 36) should return 12

• gcd(17, 3) should return 1

• gcd(15, 15) should return 15

These examples hopefully illustrate the specification.

But what program can we write to return the gcd?

46



Brute force search

We could write a simple for loop that counts down from max(x, y) to 1, looking for the first

common divisor.

But there’s a much smarter algorithm that is more than two thousand years old….

47



Euclid’s algorithm

Euclid 48



Euclid’s algorithm

• The greatest common divisor of x and x is x.

• When x > y, the greatest common divisor of x and y is the same as the greatest common

divisor of (x − y) and y.

• When x < y, the greatest common divisor of x and y is the same as the greatest common

divisor of x and (y − x).

Why does this work?

• The greatest common divisor of x and y must also be a divisor of x − y…

• There can be no greater divisor.

(Proofs left as an exercise to be completed at the end of the course)

49



Euclid’s algorithm

• The greatest common divisor of x and x is x.

• When x > y, the greatest common divisor of x and y is the same as the greatest common

divisor of (x − y) and y.

• When x < y, the greatest common divisor of x and y is the same as the greatest common

divisor of x and (y − x).

Why does this work?

• The greatest common divisor of x and y must also be a divisor of x − y…

• There can be no greater divisor.

(Proofs left as an exercise to be completed at the end of the course)

49



From algorithm to code

• The greatest common divisor of x and x is x.

• When x > y, the greatest common divisor of x and y is the same as the greatest common

divisor of (x − y) and y.

• When x < y, the greatest common divisor of x and y is the same as the greatest common

divisor of x and (y − x).

But this can easily be translated to a simple method in C#!

50



And now in C#…

int Euclid(x,y : int) {

// Assuming x and y are both greater than 0

while x != y {

if (x > y) {

x = x-y;

}

else {

y = y-x;

}

}

return x;

}

51



Invariants and computer programs

Invariants give us a way to reason about programs as they are executed!

We haven’t really done any formal logic yet…

… but I hope to have planted the idea that we might want to reason about computer programs

precisely – and even prove them correct.

And that’s one learning outcome of this course.

52



Logic for computer science: course summary

• propositional logic – the basic logic from which much can be built;

• sets – that can be used to model all kinds of data that a computer processes;

• predicate logic – that can be used to reason about sets;

• how to prove statements in propositional and predicate logic;

• induction and recursion – allow you to define infinite sets and prove properties of them;

• functions, relations, games and processes – that allow you to model computer programs;

• how to use these techniques in a formal study of logic;

• how to use these techniques to reason about computer programs;

• how computers can (help) perform logical reasoning.

53



Recap

• Organisation

• What is logic?

54



Next lecture – propositional logic

George Boole 55



Knowmore?

• Read chapter 0 in the book.

But there are plenty of excellent introductions to logic for a general audience these days:

• Logicomix – An Epic Search for Truth door Apostolos Doxiadis and Christos Papadimitriou;

• The Art of Logic by Eugenia Chang – how to apply logical thinking to society

• Any book by Raymond Smullyan – who tries to explain important logical results to a general

audience through brainteasers.

• Or you may want to check out the other literature suggested on the course website.

56



Fight! Fight! Fight!

57



See you Thursday!

57


	Organisation
	How do I pass this course?
	What is logic?
	What is a proof? And what isn’t?

