
Logic for Computer Science

04 – Boolean algebra

Wouter Swierstra

University of Utrecht

1



Last time

Naive set theory

2



This lecture

Boolean algebra

Computer circuits

Binary arithmetic

3



Organization

Several students pointed out mistakes in (the solutions) the book.

We have a collection of errata here:

https://github.com/jaccokrijnen/modelling-computing-systems-errata/blob/master/errata.md

If you think there’s a mistake, you may want to check this page.

Please open an issue or pull request if you find any new mistakes!

4

https://github.com/jaccokrijnen/modelling-computing-systems-errata/blob/master/errata.md


Boolean algebra

5



Similarities

We have seen the same equivalences between sets and propositions – for example, the following

two equations hold:

1. p∨ q⇔ q∨ p

2. A ∪ B = B ∪ A

The similarity extends far beyond this equation…

6



Challenge

Can we find a general definition, describing the operations and equalities of both sets and

propositional logic?

With such a definition, we can prove an property once for both settings.

7



Abstract algebra

In mathematics, the field of algebra (or abstract algebra more specifically) involves studying

mathematical structures.

These structures typically consist of a set, operations on the elements of this set, and the

equations that these operations must satisfy.

Sound abstract?

8



Example: monoid

Amonoid consists of:

• a set A

• an element e ∈ A

• a binary operator⊕

That satisfy the following three laws, for all x, y and z:

1. e⊕ x = x (Ident1)

2. x⊕ e = x (Ident2)

3. x⊕ (y⊕ z) = (x⊕ y)⊕ z (Associativity)

We sometimes say that e is the unit of⊕;

The third law states that the operator⊕ is associative.
9



Monoids are everywhere

• the set of propositions using∨ and F;

• the set of propositions using∧ and T;

• natural numbers using + and 0;

• natural numbers using × and 1;

• natural numbers using 0 and max;

• strings using the empty string and string concatenation;

• Imperative programs using ; and skip;

• …

Monoids pop up everywhere!

10



So what?

Claim: There unit element of any monoid is unique.

Proof: Suppose there are two candidate unit elements, e and e’. Then we know:

e = e⊕ e’ (Ident1)

= e’ (Ident2)

And hence e and e’ must be equal.

This proof works for propositions, natural numbers, strings, and anymonoid in general.

11



So what?

Claim: There unit element of any monoid is unique.

Proof: Suppose there are two candidate unit elements, e and e’. Then we know:

e = e⊕ e’ (Ident1)

= e’ (Ident2)

And hence e and e’ must be equal.

This proof works for propositions, natural numbers, strings, and anymonoid in general.

11



So what?

Claim: There unit element of any monoid is unique.

Proof: Suppose there are two candidate unit elements, e and e’. Then we know:

e = e⊕ e’ (Ident1)

= e’ (Ident2)

And hence e and e’ must be equal.

This proof works for propositions, natural numbers, strings, and anymonoid in general.

11



Boolean algebra

12



Abstract algebra

Monoids are a very simple example of an algebraic structure – there are plenty of other structures

such as groups, rings, or fields that are studied extensively.

But what kind of structure generalizes the algebraic structure on propositions and sets?

13



Boolean algebra

A Boolean algebra consists of:

• a set B;

• two elements, 0 ∈ B and 1 ∈ B, called the zero and unit respectively;

• two binary operators + and ·, called the sum and product respectively;

• a unary operator -1 called the inverse (written as x’ rather than x-1 in the book).

What laws should these satisfy?

14



Laws of boolean algebras

Commutativity

x + y = y + x

x · y = y · x

Associativity

(x + y) + z = x + (y + z)

(x · y) · z = x · (y · z)

Distributivity

x + (y · z) = (x + y) · (x + z)

x · (y + z) = (x · y) + (x · z)

15



Laws of boolean algebras

Identity

x + 0 = x

x · 1 = x

Complement

x + x-1 = 1

x · x-1 = 0

These laws generalize the versions we saw for propositional logic and sets.

16



Notes on these laws

A law such as the following:

Commutativity

x + y = y + x

Here we (implicitly) state that this equality holds for all possible choices of x and y.

For example:

• a + b = b + a

• y + x = x + y

• (c · x-1) + 1 = 1 + (c · x-1)

• …

17



Notes on these laws

A law such as the following:

Commutativity

x + y = y + x

Not only holds for all x and y, it may be used in any bigger expression. For example:

• z + (x + y) = z + (y + x)

• (a · b + c) · d = (c + a · b) · d

• 0 + 1 = 1 + 0

18



Notes on boolean algebras

The operations in a boolean algebra such as + seem like the familiar operations on numbers – but

they are not!

The distributivity property that states:

x + (y · z) = (x + y) · (x + z)

for example does not hold for numbers, addition and multiplication.

There are many other properties that we can prove that do not make any sense when you read

these formulas as numbers.

19



Example proof

Lemma for all x, x + x = x.

x + x = (x + x) · 1 (Ident)

= (x + x) · (x + x-1) (Compl)

= x + (x · x-1) (Distr)

= x + 0 (Compl)

= x (Ident)

This is another equality does not hold for numbers!

20



Example proof

Lemma for all x, x + x = x.

x + x = (x + x) · 1 (Ident)

= (x + x) · (x + x-1) (Compl)

= x + (x · x-1) (Distr)

= x + 0 (Compl)

= x (Ident)

This is another equality does not hold for numbers!

20



Boolean algebras are not numbers

Lemma for all x, x + x = x.

This does not hold for numbers.

Although boolean algebras assume that there are a 0 and 1 element – these are not ‘the number 0’

and ‘the number 1’.

There need not be an element 2 (or 3, or 4, or 5).

In general, we do not know anything about the elements of the set underlying a boolean algebra.

They could be sets, numbers, propositions, or anything at all!

21



Proofs using boolean algebra

Lemma for all x, x + x = x.

x + x = (x + x) · 1 (Ident)

= (x + x) · (x + x-1) (Compl)

= x + (x · x-1) (Distr)

= x + 0 (Compl)

= x (Ident)

The proof starts from the left-hand side x + x.

Each step applies one of the properties of boolean algebras (or possibly another lemma).

Each step is annotated with the law being used.

22



Lemma for all x, x + x = x.

x + x = (x + x) · 1 (Ident)

= (x + x) · (x + x-1) (Compl)

= x + (x · x-1) (Distr)

= x + 0 (Compl)

= x (Ident)

We then chain these steps together until we reach the desired right-hand side of the lemma we’re

proving – in this example, x.

This gives a proof showing that x and x + x are equal, going through several intermediate steps.

We can use each property in either direction – from left to right or right to left.

23



Proofs & boolean algebras

These proofs are built a bit differently than the usual ‘solving of equations’ that you may be

familiar with from high school.

Equations
x² - x = 6

 ⇔

x² - x - 6 = 0

 ⇔

(x + 2)(x - 3) = 0

From which we can conclude that x = 3 or x = -2.

24



Proofs & boolean algebras

Boolean algebras

x + x = (x + x) · 1 (Ident)

… …

= x (Ident)

Here prove an equality, rather than solve an equation.

To prove this equality, we connect each step by proving it is equal to the previous one.

When we solve an equation, we (implicitly) connect each step using the logical equivalence

operator (if-and-only-if).

25



Proving theorems over boolean algebras

x + x = (x + x) · 1 (Ident)

… …

= x (Ident)

A proof of a theorem over boolean algebras consists of a series of equalities chained together. To

prove the theorem A = B:

• start with A, apply a law of boolean algebras to prove A = A’;

• continue the proof by showing A’ = B, until you are done.

Every step is labelled with the property or axiom being used to show both sides of the equation

are equal. Chaining together all these equalities gives the complete proof.

Remember: You are not solving an equation (high school) but proving an equality!

26



Remainder of lecture

Applications and examples of boolean algebra

• Examples – powersets and booleans

• Derived equations – if we can prove derived properties of boolean algebras in terms of the

laws, we know that these properties hold for every boolean algebra.

• Applications – design and optimization of digital circuits

27



Boolean algebras - examples

28



Powersets

Given any set U, the powerset P(U) forms a boolean algebra with:

• the empty set as 0

• U as 1

• union as +

• intersection as ·

• complement as -1

Exercise: convince yourself that all the laws hold as you would expect using a Venn diagram.

(The laws that you need to check can be found in Figure 3.1 in the book)

29



0-1

If we take B to be the set {0,1}.

B forms a boolean algebra, with the operators:

• ∨ (for +)

• ∧ (for ·)

• and ¬ (for -1).

In fact, we can see familiar behaviour from numbers show up in a very different context…

30



Sum

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

Disjunction (∨) ‘behaves the same as addition’.

31



Product

x y x · y

0 0 0

0 1 0

1 0 0

1 1 1

Conjunction (∧) ‘behaves the same as multiplication’.

32



Derived theorems

Given the following three laws:

1. x · (y + z) = (x · y) + (x · z)

2. x + y = y + x

3. x · y = y · x

Question:

Prove (x + y) · z = (x · z) + (y · z)

Any equation derived from the laws is known as a theorem

33



Derived theorems

Given the following three laws:

1. x · (y + z) = (x · y) + (x · z)

2. x + y = y + x

3. x · y = y · x

Question:

Prove (x + y) · z = (x · z) + (y · z)

Any equation derived from the laws is known as a theorem

33



Derived theorems

We have seen the proof that for all x, we have x + x = x.

x + x = (x + x) · 1 (Ident)

= (x + x) · (x + x-1) (Compl)

= x + (x · x-1) (Distr)

= x + 0 (Compl)

= x (Ident)

This statement says something about sets and unions, propositions and disjunction, and any

other structure that satisfies the properties of a Boolean algebra.

Proving this once – using only the laws of boolean algebras – guarantees this property holds in

every boolean algebra.

34



Derived theorems

Many of these derived theorems follow use the following property.

For all x, y, and z, if x + y = x + z and x · y = x · z, then y = z.

In other words, if y and z ‘behave the same’ on every element x, we can conclude that y and z are

equal.

We can use this to show that (x-1)-1 = x.

35



Derived theorems

Many of these derived theorems follow use the following property.

For all x, y, and z, if x + y = x + z and x · y = x · z, then y = z.

In other words, if y and z ‘behave the same’ on every element x, we can conclude that y and z are

equal.

We can use this to show that (x-1)-1 = x.

35



De Morgan, revisited

We can even generalize de Morgan’s laws to work over any boolean algebra:

• (x + y)-1 = x-1 · y-1

• (x · y)-1 = x-1 + y-1

I’ll refer to the book for the proofs.

36



Another example proof

Question
Show that the following equation holds for all x in every boolean algebra:

 x + 1 = 1

Using the idempotence law: x + x = x.

x + 1 = x + (x + x’) (Compl)

= (x + x) + x’ (Assoc)

= x + x’ (Idempotence)

= 1 (Compl)

What about proving x · 0 = 0?

37



Another example proof

Question
Show that the following equation holds for all x in every boolean algebra:

 x + 1 = 1

Using the idempotence law: x + x = x.

x + 1 = x + (x + x’) (Compl)

= (x + x) + x’ (Assoc)

= x + x’ (Idempotence)

= 1 (Compl)

What about proving x · 0 = 0?

37



Another example proof

Question
Show that the following equation holds for all x in every boolean algebra:

 x + 1 = 1

Using the idempotence law: x + x = x.

x + 1 = x + (x + x’) (Compl)

= (x + x) + x’ (Assoc)

= x + x’ (Idempotence)

= 1 (Compl)

What about proving x · 0 = 0?

37



Duality

Given any expression or equation in a Boolean algebra, we can construct a new one by ‘reversing’

all operations – that is:

• replace 0 by 1

• replace 1 by 0

• replace + by ·

• replace · by +

For example, the dual of x + (y-1 · z) = 1 is x · (y-1 + z) = 0.

Exercise: What is the dual of x · (y-1 + z) = 0?

Essentially, this is ‘mirroring’ every operation and constant.

38



Duality

Given any expression or equation in a Boolean algebra, we can construct a new one by ‘reversing’

all operations – that is:

• replace 0 by 1

• replace 1 by 0

• replace + by ·

• replace · by +

For example, the dual of x + (y-1 · z) = 1 is x · (y-1 + z) = 0.

Exercise: What is the dual of x · (y-1 + z) = 0?

Essentially, this is ‘mirroring’ every operation and constant.

38



Duality

Duality theorem

The dual of every theorem in a Boolean algebra is also a theorem.

Proof:

For every law of a boolean algebra, its dual is also a law – hence we can mirror thet proof of the

original theorem to produce a proof of the dual theorem.

Hence, it suffices to prove either one of the two de Morgan laws:

• (x + y)-1 = x-1 · y-1

• (x · y)-1 = x-1 + y-1

39



Duality

Duality theorem

The dual of every theorem in a Boolean algebra is also a theorem.

Proof:

For every law of a boolean algebra, its dual is also a law – hence we can mirror thet proof of the

original theorem to produce a proof of the dual theorem.

Hence, it suffices to prove either one of the two de Morgan laws:

• (x + y)-1 = x-1 · y-1

• (x · y)-1 = x-1 + y-1

39



Duality

Duality theorem

The dual of every theorem in a Boolean algebra is also a theorem.

Proof:

For every law of a boolean algebra, its dual is also a law – hence we can mirror thet proof of the

original theorem to produce a proof of the dual theorem.

Hence, it suffices to prove either one of the two de Morgan laws:

• (x + y)-1 = x-1 · y-1

• (x · y)-1 = x-1 + y-1

39



Duality example

We have shown that x + 1 = 1.

x + 1 = x + (x + x’) (Compl)

= (x + x) + x’ (Assoc)

= x + x’ (Idempotence)

= 1 (Compl)

The dual proof shows that x · 0 = 0

x · 0 = x · (x · x’) (Compl)

= (x · x) · x’ (Assoc)

= x · x’ (Idempotence)

= 0 (Compl)

40



Abstraction

A week ago we were discussing fire alarms and evacuating the class room…

Now we’ve transitioned to the formal manipulation of funny symbols.

It’s important to develop an intuition for what these symbols mean – and practice makes perfect.

And even though it seems like we’ve lost all connection with reality, boolean algebra has many,

many applications.

Including in the design of the computer hardware…

41



Computer circuits

42



Hardware 101

Now - we show how to apply boolean algebra in the optimization of hardware, as you learned in

the last period.

Computer hardware is constructed from logical gates.

We will work with the followingmodel of hardware:

• A circuit takes a collection of inputs to produce outputs;

• Each input and output takes the form of a wire, carrying a binary value—i.e. 0 or 1.

• These inputs are fed into logical gates;

• Each logical gate behaves according to a specific boolean function.

Note that we’re ignoring all kinds of aspects of hardware design: physics, timing, current,

resistance, magnetic interference, etc.

43



Example: (a·b) · (c · d)

a
b

c
d

44



Other gates?

x
y

x · y x
y x + y x−1x

• There are many different logical gates, corresponding to the familiar boolean operations.

• For example, there are gates for conjunction (AND), disjunction (OR), and negation (NOT).

45



Implementing XOR

x y XOR x y

0 0 0

0 1 1

1 0 1

1 1 0

Question:

Implement a circuit that takes the ‘exclusive or’ of two inputs using the AND, OR and NOT gates.

46



Solution

x

y

But many alternatives exist…

47



Finding a solution

x y XOR x y

0 0 0

0 1 1

1 0 1

1 1 0

One way to find this solution is by reading off the lines of the truth that return 1 and taking their

disjunction:

(x · y-1) + (x-1 · y)

This works for any truth table.

48



Another problem

x y ??? x y

0 0 1

0 1 1

1 0 0

1 1 0

We can implement this mystery gate as follows:

(x-1 · y-1) + (x-1 · y)

But is this a good choice? It requires 1 OR gate, 2 AND gates, and 3 NOT gates…

49



Boolean algebra to the rescue

(x-1 · y-1) + (x-1 · y) = x-1 · (y-1 + y) (Distr)

= x-1 · 1 (Compl)

= x-1 (Ident)

We only need a single gate – the problem was much simpler than we thought initially!

Of course this is an artificial example – but in realistic circuits such optimizations can really matter!

50



Boolean algebra to the rescue

(x-1 · y-1) + (x-1 · y) = x-1 · (y-1 + y) (Distr)

= x-1 · 1 (Compl)

= x-1 (Ident)

We only need a single gate – the problem was much simpler than we thought initially!

Of course this is an artificial example – but in realistic circuits such optimizations can really matter!

50



Logical gates

Built from these primitive gates, there are plenty of bigger circuits:

• multiplexers are similar to if-then-else statements, that produce one of two inputs depending

on a selection bit;

• demultiplexers takes an input and selection bit, and sends the input to one of two possible

outputs, depending on the selection bit.

Sequential circuits introduce loops, allowing the circuit to store information from one clock cycle to

the next – this is enables you to havememory.

51



Binary arithmetic

52



Binary arithmetic

We can do much more with logical gates than just manipulate boolean formulas.

We can perform all kinds of arithmetic.

Next up, we’ll study how to model integers and write circuits that manipulate them.

This forms the heart of the Arithmetic Logical Unit (ALU) – an important part of any modern CPU.

53



Binary numbers

We’re used to writing a number in base 10. A sequence of digits, like 642, is read as

642 = (6× 102) + (4× 101) + (2× 100)

We can interpret a sequence of binary digits (0’s and 1’s) in a similar fashion.

10011 = (1× 24) + (0× 23) + (0× 22) + (1× 21) + (1× 20)

= 16+ 0+ 0+ 2+ 1

= 19

Claim: We can write any number as a sum of powers of two.

54



Negative numbers

If we only represent positive numbers in this fashion, we call these binary numbers unsigned.

But we can also represent positive and negative numbers as signed integers.

The most common representation of signed integers is the so-called two’s complementmethod.

We interpret five bits, such as 10011, as follows.

• the first bit is interpreted as−25;

• the last four bits are interpreted as normally;

You can observe this yourself: if you add two huge numbers (in most programming languages),

this can sometimes produce a negative result.

55



Negative numbers

Bits (positive) value Bits (negative) value

00000 0 10000 -16

00001 1 10001 -15

00010 2 10010 -14

00011 3 10011 -13

00100 4 10100 -12

00101 5 10101 -11

… … … …

01110 14 11110 -2

01111 15 11111 -1

56



57



Adding binary numbers

We won’t be too concerned with negative numbers for the remainder of the lecture.

Suppose we want do design a circuit that adds two binary numbers.

How might we go about doing this?

58



Adding binary numbers on paper

Question:

What is the result of 01101 + 00111?

As humans, we can convert to the usual decimal notation add the two numbers and convert back.

1 + 4 + 8 + 1 + 2 + 4 = 20

But that’s certainly no the best way to perform binary addition.

59



Adding binary numbers on paper

Question:

What is the result of 01101 + 00111?

As humans, we can convert to the usual decimal notation add the two numbers and convert back.

1 + 4 + 8 + 1 + 2 + 4 = 20

But that’s certainly no the best way to perform binary addition.

59



Adding binary numbers

01101

+ 00111

---------

?????

60



Adding binary numbers

¹¹¹¹

01101

+ 00111

---------

10100

10100 is 20 in decimal – the familiar addition principles of addition work just as well on binary

numbers

61



Designing an adder

To construct an adder that adds two n-bit binary numbers, we’ll proceed in a few steps:

• Design half-adder – a circuit to add two bits, producing a sum and a carry bit;

• Combine such half-adders to a full-adder that computes the sum of two n-bit words.

In what follows, we’ll focus on 4-bit adders – but the techniques can be generalized to arbitrary

width adders.

62



Half-adder

x

y s

c

HA

The half-adder takes two bits, x and y, as inputs to produce a sum and a carry bit.

How should it behave?

63



Half-adder behaviour

x y c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Suppose we want to add x and y to produce a sum bit s and carry c.

The sum is just the XOR we saw previously; the carry is computed by taking the AND of x and y.

64



Half-adder

We build a bigger circuit, implementing XOR as we saw previously and taking the AND of both

inputs to compute the carry.

Alternatively, I claim we can write:

s = (x + y) · (x · y)-1

c = (x · y)

Now the subexpression (x · y) can be shared in both computations, resulting in fewer gates

necessary.

The idea is to compute (x · y) once, but use the result in both s and c.

65



Half-adder

We build a bigger circuit, implementing XOR as we saw previously and taking the AND of both

inputs to compute the carry.

Alternatively, I claim we can write:

s = (x + y) · (x · y)-1

c = (x · y)

Now the subexpression (x · y) can be shared in both computations, resulting in fewer gates

necessary.

The idea is to compute (x · y) once, but use the result in both s and c.

65



Half-adder

x

y
c = xy

s = (x+y)(xy)’

66



But…

But we’d still need to check that our previous version of XOR and current formulation are equal.

Put differently, does the following equality hold?

(x · y-1) + (x-1 · y) = (x + y) · (x · y)-1

We still need to find a proof!

67



But…

But we’d still need to check that our previous version of XOR and current formulation are equal.

Put differently, does the following equality hold?

(x · y-1) + (x-1 · y) = (x + y) · (x · y)-1

We still need to find a proof!

67



Proof

(x · y-1) + (x-1 · y)

= ((x · y) + x-1 · y-1)-1

= (x · y)-1 · (x-1 · y-1)-1

= (x · y)-1 · (x-1-1 + y-1-1)

= (x · y)-1 · (x + y)

= (x + y) · (x · y)-1

Homework

Identify all the laws that have been used here.

68



Full-adders

x
y
cin

s

cout

FA

A half-adder lets us add two input bits to produce a sum and a carry.

A full-adder takes two input bits and a carry-in bit and produces a sum and carry-out bit.

We can create a full-adder from two half-adders.

69



Full-adders

cin y x s cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

• s is 1 when one or all three inputs are 1;

• cout is 1 when at least two inputs are 1.
70



Full-adders

cin

x

y

HA
HA

s

cout

Use a half-adder to add x and y;

Add the sum to the carry in;

Take the disjunction of both carry outs.

71



A 2-bit adder

From two full-adders, we can construct a 2-bit adder.

• Use a full-adder to add the least significant two bits, with the initial carry being 0;

• Use a second full-adder to add the most significant two bits, together with the carry from the

first addition.

This gives us two sum bits and a final carry bit.

72



A 2-bit adder

cout

s

cin

yx

cout

s

cin

yx

x1 y1 x0 y0

0c

s1 s0

73



From a 2-bit adder to a 32-bit adder

The 2-bit adder performs a single ‘column’ of addition of binary numbers.

Generalising this to 32-bits is not hard – but essentially repeats a row of full-adders that are linked

together appropriately.

In a similar fashion, all kinds of more complicated arithmetic circuits can be constructed for

multiplication, division, modulo, and so forth.

Similarly, we can construct circuits to handle the memory access, caching, and handling all the

typical operations from some binary instruction set.

74



Recap

• We can generalize the structure of both propositional logic and sets to a boolean algebra;

• Using such an algebra, we can prove theorems that hold for every algebra – such as duality.

• We can use the algebraic structure to reason about logical gates in hardware design.

75



Elements of computing systems: Building a modern computer from first principles

Covers a bit of everything from:

• bits to binary arithmetic;

• computer architecture;

• assembler and programming languages;

• operating systems

Every new abstraction is built up from the previous pieces.
76



Learning the laws

Do you need to know the laws of boolean algebras by heart for the exam?

Yes.

Although I will not ask you to write down all ten laws – I will almost certainly ask you to do a proof;

or show that some structure is a boolean algebra; or ask whether a given operator is commutative

or not.

I want you to understand concepts like commutativity, distributivity, associativity, etc.

So yes, this means study and practice to learn what these words mean.

77



Learning the laws

Do you need to know the laws of boolean algebras by heart for the exam?

Yes.

Although I will not ask you to write down all ten laws – I will almost certainly ask you to do a proof;

or show that some structure is a boolean algebra; or ask whether a given operator is commutative

or not.

I want you to understand concepts like commutativity, distributivity, associativity, etc.

So yes, this means study and practice to learn what these words mean.

77



Proofs about boolean algebras

On the exam, I may ask you to prove a theorem about boolean algebras.

I’ll typically give you any auxiliary theorems that you’ll need, and possibly hint at one direction to

take the proof.

I find many of the proofs quite ‘unintuitive’:

How do I know that I should change x to x + 0 to x + (x · x’)?

I don’t know of a ‘good’ way to find these proofs. Practice helps you recognise common patterns –

but often it requires a bit of fumbling around.

When it comes to proof strategies that we’ll see next week will give us a much clearer toolbox to

find and write proofs in a structured fashion.

78



Proofs about boolean algebras

On the exam, I may ask you to prove a theorem about boolean algebras.

I’ll typically give you any auxiliary theorems that you’ll need, and possibly hint at one direction to

take the proof.

I find many of the proofs quite ‘unintuitive’:

How do I know that I should change x to x + 0 to x + (x · x’)?

I don’t know of a ‘good’ way to find these proofs. Practice helps you recognise common patterns –

but often it requires a bit of fumbling around.

When it comes to proof strategies that we’ll see next week will give us a much clearer toolbox to

find and write proofs in a structured fashion.

78



Proofs about boolean algebras

On the exam, I may ask you to prove a theorem about boolean algebras.

I’ll typically give you any auxiliary theorems that you’ll need, and possibly hint at one direction to

take the proof.

I find many of the proofs quite ‘unintuitive’:

How do I know that I should change x to x + 0 to x + (x · x’)?

I don’t know of a ‘good’ way to find these proofs. Practice helps you recognise common patterns –

but often it requires a bit of fumbling around.

When it comes to proof strategies that we’ll see next week will give us a much clearer toolbox to

find and write proofs in a structured fashion.

78



Material

• Modelling Computing Systems Chapter 3

79


	Boolean algebra
	Boolean algebra
	Boolean algebras - examples
	Computer circuits
	Binary arithmetic

