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Last time

Boolean algebra

Computer circuits

Binary arithmetic
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This lecture

Predicate logic - Gottlob Frege
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Organization

• Second quiz is today…

• Try to keep up – only a few weeks left to the mid-term.

• Not everyone comes to the exercise sessions…
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A word of warning
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Limits of propositional logic

When studying sets, we sometimes want to prove theorems in terms of the sets’ elements.

Examples

• Two sets A and B are disjoint if there is no element x ∈ A ∩ B.

• We say A is a subset of B when for all x ∈ A, we also have x ∈ B.

These statements make claims about elements of a set, but they are not simple propositions…
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Socrates

Given the hypotheses:

• All men are mortal.

• Socrates is man.

Is it valid to deduce that ‘Socrates is mortal’?

How do we know? We cannot model such statements using only propositional logic.

There is more going on in these statements than ‘just’ logical implication.

We need a richer logic to study such statements.
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Predicates and propositions
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Predicates

We sometimes defined sets by stating using the following notation:

• { x : x > 17}

• { p : p is a prime number}

Or more generally, we write {x : x has the property P}

Such a set consists of all elements that satisfy the predicate P.

In general, we will write P(x) when ‘x has the property P’, or when ‘P holds for x’.
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Predicates versus propositions

A predicate is not the same as a proposition:

P(x) = x > 17∧ x > 5 defines a predicate on x

3 < 12 defines a proposition

You may want to think of a predicate as a function that computes a proposition for every value of

the variable x.
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More than one argument

Predicates can have more than one argument. In that case, they are typically called a relation.

We have already encountered several different relations when studying sets:

• SubsetOf(A,B) holds if for all x, x ∈ A⇒ x ∈ B

• EqualSet(A,B) holds if both A⊆ B and B⊆ A

• ProperSubset(A,B) holds if A⊆ B and A ≠ B

Many familiar relations are written using infix operators, such as⊆ or =, rather than a function

name, such as SubsetOf.

We’ll see a lot more about relations in a few lectures…
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Example: divisibility

We can ‘define’ a predicate Divides(x, y) to hold when x and y are natural numbers and x divides y

evenly (that is, there is no remainder after performing the division):

• For example, Divides(3, 15) holds.

• But Divides(3, 17) does not.

We can construct a truth-set:

{(x, y) : Divides(x, y)}

To be the set of all pairs (x, y) such that x divides evenly into y.

Traditionally, mathematicians write x | y when Divides(x, y) holds.

We’ll see a more formal definition later today.
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Predicates vs propositions – handling variables

Question

Is c > 23 a predicate or a proposition?

We can’t say – are we defining a predicate on a variable c?

Or are we referring to some constant – like the speed of light?

As soon as we work with predicate logic, we need to treat variables extremely carefully.

Part of this lecture is aimed at introducing some associated terminology of studying variables and

scoping.
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Programming and predicates

If you write a program that contains undeclared variables, the compiler will typically reject your

programming, saying that a variable is ‘not in scope’.

If you write a proposition or predicate with variables, we have to be very careful about their

meaning.

A predicate such as x > 17may hold for some values of x, but certainly not all.
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Variables and substitution
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Bound and free variables

When defining a predicate of the form:

P(x) = ...x...

The occurrences of x on the right hand side of the equality all refer to the x bound by the

declaration P(x).

If we write:

P(x) = ...y...

It is not clear what y is – we do not know where it is bound - we say that the variable y is free.
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Example: substitution

We can turn any predicate into a proposition by substituting a value for variable bound in the

predicate’s definition.

For example, we can define the following predicate:

P(x) = x > 1337

• P(10.000) is the proposition 10.000 > 1337 (which happens to be true)

• P(5) is the proposition 5 > 1337 (which happens to be false).

But we can also consider P(y + 23), which corresponds to the propostion (y + 23) > 1337
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The universe of discourse

Question

How many elements are there in the set { x : x < 17}?

It depends!

Is it a set of natural numbers, integers, real numbers, …

I prefer to be explicit:

{ x ∈ N : x < 17 }

This avoids confusion and makes it clear what the universe of discourse is that I’m assuming.

These examples all show that – even in the study of formal logic – there can be information left

implicit in the context, naming conventions, universe of discourse, etc.
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Quantifiers
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Repeated conjunction

Let A be the set {0,1,2,3}.

We say A is the subset of some other set B, written A⊆ B, when all the elements of A also occur in

the set B.

Or more precisely: 0 ∈ B ∧ 1 ∈ B ∧ 2 ∈ B ∧ 3 ∈ B

This may work for a finite set, but what if we want to show that all the even numbers are also

natural numbers?

0 ∈N ∧ 2 ∈N ∧ 4 ∈N ∧ 6 ∈N ∧ …

If we want to give a precise definition of a relation such as subsets, we need new notation and a

more expressive logic.
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Universal quantification

In predicate logic we can define the subset relation between A and B formally as follows:

∀x (x ∈ A ⇒ x ∈ B)

∀x P(x) is read as ‘for all x, P holds for x’.

We call the ‘upside down A’ the universal quantifier.
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Repeated disjunction

Two sets A and B are not disjoint if there is an element x ∈ A ∩ B.

Let A be the set {0, 1, 2, 3}. When is A not disjoint from B?

(0 ∈ B ∨ 1 ∈ B ∨ 2 ∈ B ∨ 3 ∈ B)

Here we want to talk about repeated disjunction.

For this, we introduce the existential quantifier, written ∃.

We can formulate the proposition that A and B are not disjoint as:

∃x (x ∈ A ∧ x ∈ B)

More generally, we write:

∃x P(x)

Read as: there is some element x for which the predicate P holds.
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Variations

Different textbooks use slightly different notation:

• ∀x ∈ A P(x) - making explicit that x is an element of some set A. This is sometimes referred

to as bounded quantification.

• ∀x.P(x) or ∀x, P(x) - making clear where x ends and P starts. I’ll use this on the slides

occassionally: I find it makes formulas easier to read.

• ∀x : Int32 P(x) - making explicit that x has a certain type, such as Int32.

• And several other variations exist…
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Examples

• Previously we ‘defined’ the Divides(x,y) relation to hold when x divides y evenly. Using

quantifiers, we can give a more precise definition:

Divides(x,y) = ∃ k k × x = y

• We can define the subset relation more precisely:

Subset(A,B) = ∀ x (x ∈ A⇒ x ∈ B)

• Or the property that two sets are disjoint:

Disjoint(A,B) = ¬∃x (x ∈ A∧ x ∈ B)
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Example: GCD

Question

How would you formulate the proposition that d is the greatest common divisor of the two

numbers x and y? You may use the Divides relation we saw on the previous slide.

GCD(x,y,d) =

Divides(d,x)∧ Divides (d,y)

∧ ∀ c (Divides(c,x)∧ (Divides(c,y)⇒ c ≤ d)

(Other solutions may exist)

25



Example: GCD

Question

How would you formulate the proposition that d is the greatest common divisor of the two

numbers x and y? You may use the Divides relation we saw on the previous slide.

GCD(x,y,d) =

Divides(d,x)∧ Divides (d,y)

∧ ∀ c (Divides(c,x)∧ (Divides(c,y)⇒ c ≤ d)

(Other solutions may exist)

25



Variations

The existential quantifier, ∃ x P(x), can be used to state that there is some x satisfying the

predicate P.

It doesn’t say how many different x’s satisfy P.

Sometimes people write:

∃! x P(x)

To mean there is exactly one x such that P(x) holds.
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More than one quantifier

We can construct more complex formula’s using more than one quantifier:

• ∀ x ∀ y . x = y⇒ y = x

• ∀ x ∃ y . y > x

• ∃ x ∈N ∀ y ∈N . x ≤ y

• ∀ x ∃ y ∃ z . x = y + z

Question

What do these formulas mean?
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Exactly one

We previously saw this variation of the existential quantifier:

∃! x P(x)

Question

Can we express this using the usual existential and/or universal quantifiers?

There are several different ways to write this:

• ∃x (P(x) ∧ (∀ y P(y)⇒ x = y))

• ∃x (P(x) ∧ (¬∃ y P(y)∧ x ≠ y))

• ∃x (P(x) ∧ (∀ y ¬P(y)∨ x = y))

• …
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Conventions

In Modelling computing systems, ∀ x P(x)⇒ Q(x) is to be read as (∀ x P(x))⇒ Q(x).

Not all books agree however: other books interpret this formula as ∀ x (P(x)⇒ Q(x)).

I will try to always disambiguate between the two by explicit parentheses.
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Multiple quantifiers

Does the order of quantifiers matter?

In other words, are ∀x∃y.P(x, y) and ∃y∀x.P(x, y) the same?

Let’s consider the following example:

∀ x ∃ y x + y = 0

∃ y ∀ x x + y = 0

The first statement is true; the second is not. So the order of quantifiers really does matter.
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Multiple quantifiers

∀ x ∀ y P(x,y) and ∀ y ∀ x P (x,y) are equivalent.

Similarly, ∃ x ∃ y P(x,y) and ∃ y ∃ x P (x,y) are equivalent.

Question

Why is this?

A complete answer requires a formal study of predicate logic.

We’ll cover this after Christmas.

But I can give some intuition for now.
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Meaning of predicate logic
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Brouwer-Heyting-Kolmogorov interpretation

What is a proof of some logical proposition P?

• a proof of P∧ Q consists of a proof of P and a proof of Q;

• a proof of P∨ Q is either a proof of P or a proof of Q;

• a proof of P ⇒ Q is a function that turns any proof of P into a proof of Q;

• a proof of ¬P is a function that maps any proof of P into a proof of F;

• a proof of ∀x ∈ A P(x) is a function that, for each a ∈ A computes a proof of P(a);

• a proof of ∃x ∈ A P(x) consists of an element a ∈ A and a proof that P(a) holds;

• there is no proof of falsity.
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Using the BHK interpretation

• A proof of ∃ x ∈ A ∃ y ∈ B P(x,y) consists of:

• a value a ∈ A

• a value b ∈ B

• a proof of P(a,b)

• A proof of ∃ y ∈ B ∃ x ∈ A P (x,y)

• a value b ∈ B

• a value a ∈ A

• a proof of P(a,b)

Clearly we can convert between the two – hence they are equivalent.
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Using the BHK interpretation

• A proof of ∀x ∈ A ∃y ∈ B.P(x, y) consists of

• a function that maps any a ∈ A to a pair of a b ∈ B and a proof of P(a, b)

• A proof of ∃y ∈ B ∀x ∈ A.P(x, y) consists of:

• an element b ∈ B

• a function that maps every a ∈ A to a proof that P(a, b) holds.

Here we can see these proofs have a very different structure.

It is not at all obvious (and in fact impossible) to convert from the first to the second – how do we

choose a b ∈ B?

The other conversion is possible, however.

Hence the implication holds in one direction, but not the other.
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About the BHK interpretation

The BHK interpretation describes proofs in intuitionistic logic, a variant of the more popular

classical logic that rejects certain axioms, such as:

• p∨ ¬p

• ¬¬p ⇒ p

• …

The consequence, however, is that our proofs become executable – each proof corresponds to a

function that can be run on your computer.

It makes perfect sense for computer scientists to work in such a logic. Even if almost all

mathematicians prefer classical logic, where the above axioms do hold.

As a result – depending on your logic - the BHK interpretation may suggest no proof exists, where

there is a proof using classical axioms.
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Binding and scope
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Terminology about variable binding

Consider the following formula in predicate logic:

∀x P(x, y)

• the variable y is free;

• the quantifier ∀ binds the variable x, hence the occurrence of x in P(x, y) is not free but

bound.

• we can distinguish between the binding occurrence of x, namely ∀x, and the (regular)

occurrences of the variable x (for example, as argument to the predicate P)
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Scope

The scope of a quantifier is the part of a formula where the variable is bound:

∀x(P(x)∧ Q(x))

Here the scope of the universal quantifier is (P(x)∧ Q(x)).

When more than one quantifier binds the same variable, the occurrences of that variable refer to

the nearest binding quantifier.

In this example, I’ve color-coded the variables to coincide with their corresponding quantifier:

∀x (P(x)∧ ∃x Q(x)∧ R(x))
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Equivalent expressions

Are the following formulas in predicate logic equivalent?

• ∀ x P(x)

• ∀ y P(y)

They are ‘almost always’ equivalent.

Take P(x) to be ∃y x ≠ y, for example. Then the two formulas correspond to:

• ∀x ∃y x ≠ y

• ∀y ∃y y ≠ y

Which are clearly not the same!
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Equivalent expressions

We can freely rename bound variables, converting between

∀x P(x) and ∀y P(y)

Provided x and y do not occur freely in P.

This example highlights the kind of thing that can go wrong when working with variables.
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Modelling in predicate logic
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Modelling in predicate logic

Predicate logic is extremely useful when it comes to make natural language more precise.

We’ll cover some (artificial) examples in the lecture today – but this is one of the key applications of

logic in computer science.

When a customer comes up with a list of requirements, for example, translating these to

(predicate) logic statements allows you to study them precisely and unambiguously – and perhaps

even make clear why no solution exists.
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Modelling in predicate logic

Every dog that has stayed in the kennel will have to go into quarantine.

Given predicates:

• K(x) = ‘x has stayed in the kennel’

• Q(x) = ‘x must go into quarantine’

We can express such a statement more precisely as:

∀d ∈ Dog.K(d) ⇒ Q(d)
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Ambiguity

Natural language is not very suitable for making these statement precise.

Given a predicate Loves(p,d) when a person p loves the dog d, written p♡ d, what formula

corresponds to:

Everybody loves a dog

Two alternatives exist:

• ∃ d ∈ Dogs ∀ p ∈ People . p♡ d

• ∀ p ∈ People ∃ d ∈ Dogs . p♡ d

Without more information, it’s impossible to tell what the intended meaning is.
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Modelling in predicate logic

• Everybody loves my baby

• But my baby don’t love anybody but me

Question
Write these statements as a formula in predicate logic.

We introduce two variables: b (for ‘my baby’) and m (for ‘me’) and a binary relation♡ (for ’loves).

• ∀x x♡ b

• ∀x b♡ x⇒ x = m
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Modelling in predicate logic

There are lots more examples in the exercises.

Translating between natural language and predicate logic is a great way to develop some intuition

for predicate logic.

But beware: often many different (equivalent) solutions may exist!
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Rules for quantification
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Properties of quantifiers

We can generalize De Morgan’s laws to work over quantifiers as follows:

• ¬∀x P(x) ⇔ ∃x¬P(x)
• ¬∃x P(x) ⇔ ∀x¬P(x)

We can ‘prove’ this by replacing the quantifiers with repeated conjunction/disjunction as necessary.
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Properties of quantifiers

Similarly, we can show that quantifiers interact with conjunction/disjunction as follows:

• ∀x (P(x)∧ Q(x)) ⇔ (∀x P(x))∧ (∀x Q(x))
• ∃x (P(x)∨ Q(x)) ⇔ (∃x P(x))∨ (∃x Q(x))

Note: the other laws relating ∀-∨ and ∃-∧ do not hold in general.
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Proofs

We have already seen how to prove statements in propositional logic – by writing out a truth table.

Yet how can we prove statements in predicate logic?

To check if a statement of the form:

∀ n ∈N P(n)

holds would require checking an infinite number of statements

So how can we prove statements in predicate logic?
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Proofs - example

We previously saw the pair of statements:

• Everybody loves my baby

• But my baby don’t love anybody but me

We introduce two variables: b (for ‘my baby’) and m (for ‘me’) and a binary relation♡ (for ’loves).

• ∀x x♡ b

• ∀x b♡ x⇒ x = m

Question
What can we conclude about ‘my baby’ from these statements?

From the first statement, we can conclude that b♡ b.

But then we can use this – together with the second statement – to establish that b = m.

Hence ‘my baby’ is me.
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Programming with predicates

Logic programming languages - notably Prolog - allow you to define custom predicates, stating

that a list is sorted or a number is prime.

Rather than execute a program, you write a query of the form P(x)…

… and the execution engine then finds those values of x that satisfy the predicate P.

Much more in the courses Computationele intelligentie and Intelligente systemen.
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Proofs - perspective

In the next lecture, I’ll give an ‘intuitive’ (but not formal) set of rules for writing proofs in

propositional logic and predicate logic.

After the Christmas break, we’ll study a formal notion of proof (for propositional logic).

But formalising the reasoning rules of predicate/propositional logic requires a bit more advanced

mathematical machinery.

But the rules we’ll cover next time should be enough to write out proofs like the one on the

previous slide.
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Recap

• Predicate logic: predicates, quantifiers, propositional logic operators

• Intuition: the BHK reading of predicate logic formulas

• Terminology for talking about variables: free, bound, scope

• How to model sentences from natural language in predicate logic

• Properties and equivalences between predicate logic formulas

But no formal notion of proofs just yet…
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Material

• Modelling Computing Systems Chapter 4
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