
Logic for Computer Science

08 – Relations

Wouter Swierstra

University of Utrecht

1



Organization

• The midterm is coming up. . . this is the last lecture with mid-term material.

• Next week Thursday: revision lecture on how to prepare for the mid-term.

2



Exam tips

• Don’t worry about writing beautiful mathematical symbols in Remindo!

• Feel free to use /\ rather than∧, etc. - any reasonable shorthand is fine, provided I can

understand what you wrote.

• All questions must be entered in Remindo - but I will provide you with scrap paper.

• Practice, practice, practice!

3



Last time

Functions

4



Today

Relations

5



Previously

The truth set associated with a predicate P is the set:

{x : P(x) holds}

We can also consider the truth set associated with predicates that take more than one argument:

{(x, y, z) : R(x, y, z) holds}

For example: R(x, y, z)might hold if and only if the customer with ID x ordered product y on the

date z.

The corresponding truth set then defines a subset of the set CustomerID× ProductID× Date.

6



‘Not all pairs’

More generally, a relation R on A and B is a subset of a cartesian product A× B.

We write R(a,b) or aRb if (a,b) ∈ R; that is, a and b are related by R.

Examples of relations

• The less-than-or equals relation on numbers, x⩽ 4

• The equality relation, x = y

• The ‘is-an-ancestor-of’ or the parenthood relation between humans.

• The ‘equivalent’ relation between programs, describing when two programs behave the

same.

• The propositionally equivalent relation between propositions.

7



Relations and databases

In the next period, you’ll take the course on Databases.

There you’ll see how to model databases and database queries using relations and relational

algebra respectively.

The central idea is that we can model a database table as a relation – capturing the entries in the

database.

For example:

{(s, g, d) : s is a student who obtained the grade g on the date d for the logic class}

8



Functions vs relations

Functions and relations seem are similar concepts – but there are important differences.

• Given a function f : A → B, we can construct the relation {(x, f(x)) : x ∈ A}, sometimes

referred to as the graph of the function f.

• But not all relations are functions. For example, the ‘is-an-ancestor-of’ relation between me

and my ancestors is not a function. Each person has many different ancestors.

• A function f : A → B associates a value in B with each a ∈ A; in a relation each a ∈ Amay be

associated with zero, one or many elements of B.

• Given a relation on A× B such that each a ∈ A is related to exactly one b ∈ B - this

determines a function f : A → B

9



Terminology

A relation between two sets A and B is called a binary relation.

Many familiar binary relations use an infix operator: ⊆, =,⇔,⩽, . . .

Given a relation R ⊆ A × B we sometimes refer to A as the source and B as the target of R.

When a relation R is a subset of A× A we sometimes call R a homogeneous relation;

When a relation R is a subset of A× B (for two different sets A and B) we call R a heterogeneous

relation.

10



Visualizing relations

d

c

b

a

4

3

2

1

11



Extreme relations

• A× B is also a relation – every pair of elements (a,b) where a ∈ A and b ∈ B, is related.

• The empty set ∅ is also a subset of A× B – no two elements are related.

• The equality relation on a set A is defined by { (a,a) : a ∈ A}.

• For any relation R on A× B, we can define the inverse relation on B× A as follows:

R−1 = {(b, a) : (a, b) ∈ R}

For example, given the relation <⊆N× N, we can define the inverse relation<−1 – more

commonly known as>.

12



Combining relations

We can use familiar operations for manipulating sets to manipulate relations:

• a ⩽ b = (a < b) ∪ (a = b)

• Parent = Father ∪Mother

• Son = Child ∩Male

13



Domain and range

Given a relation R ⊆ A × B, we sometimes refer to the

• the domain of R is given by

{a ∈ A : ∃b ∈ B (a, b) ∈ R}

• the range of R is given by

{b ∈ B : ∃a ∈ A (a, b) ∈ R}

14



Properties of relations

15



Properties of relations

Just as we studied injective, surjective, or bijective functions, there are plenty of properties of

relations worth studying:

• reflexive relations

• symmetric relations

• asymmetric relations

• antisymmetric relations

• transitive relations

• relational composition

16



Reflexive relations

A relation is reflexive if R(x,x) for all x.

Examples

• equality

• propositionally equivalent formulas;

Non-examples

• x < y (where x and y are numbers);

• The strict-subset relation on sets.

• Is-a-parent-of relation between people.

If a relation R is ‘never reflexive’, that is, ∀x ¬(xRx) we call R irreflexive.

17



Reflexive relations

A relation is reflexive if R(x,x) for all x.

Examples

• equality

• propositionally equivalent formulas;

Non-examples

• x < y (where x and y are numbers);

• The strict-subset relation on sets.

• Is-a-parent-of relation between people.

If a relation R is ‘never reflexive’, that is, ∀x ¬(xRx) we call R irreflexive.

17



Symmetric relations

A relation is symmetric if R(x,y) implies R(y,x).

Examples

• equality

• propositionally equivalent formulas;

• the ‘is a sibling of’ relation;

Non-examples

• x⩽ y (where x and y are numbers);

• The subset relation on sets.

• The graph of the sort function.

18



Asymmetric relations

A relation is asymmetric if R(x,y) implies ¬R(y,x)

Question: Can a relation be both symmetric and asymmetric? What is an example of an

asymmetric relation?

Examples

• The < relation on numbers;

• The ‘is-a-strict-prefix-of’ relation on strings.

• . . .

19



Asymmetric relations

A relation is asymmetric if R(x,y) implies ¬R(y,x)

Question: Can a relation be both symmetric and asymmetric? What is an example of an

asymmetric relation?

Examples

• The < relation on numbers;

• The ‘is-a-strict-prefix-of’ relation on strings.

• . . .

19



Antisymmetric relations

A relation is antisymmetric if R(x,y) and R(y,x) implies x = y.

Examples

• Equality;

• ⩽ on natural numbers;

• ⊆ on sets.

Non-examples

• Equivalence of propositional formulas.

20



Transitive relations

A relation is transitive if R(x,y) and R(y,z) implies R(x,z).

Question: What examples of such relations?

Examples

• Subsets, equality, comparison of numbers, prefixes of strings, . . .

21



Transitive relations

A relation is transitive if R(x,y) and R(y,z) implies R(x,z).

Question: What examples of such relations?

Examples

• Subsets, equality, comparison of numbers, prefixes of strings, . . .

21



Relational composition

We can compose relations, just as we compose functions.

Given a relation R on A× B and a relation S on B× C, we can form the composed relation R ◦ S on
A× C as follows:

R ◦ S = {(a, c) : there is some b ∈ B such that aRb∧ bSc}

22



Properties

We can rephrase some of these properties in terms of subsets:

If R is a relation on A× A

• R is reflexive when it contains the equality relation,= ⊆ R

• R is symmetric when R−1 ⊆ R (or equivalently, when R ⊆ R−1)

• R is transitive when R ◦ R ⊆ R

23



Equivalence relations

An equivalence relation is a relation that is:

• reflexive – R(x,x) for all x.

• symmetric – R(x,y) implies R (y,x)

• transitive – R(x,y) and R(y,z) implies R(x,z)

The canonical example of such a relation is equality.

But many others exist!

24



Equivalence relations

An equivalence relation is a relation that is:

• reflexive – R(x,x) for all x.

• symmetric – R(x,y) implies R (y,x)

• transitive – R(x,y) and R(y,z) implies R(x,z)

The canonical example of such a relation is equality.

But many others exist!

24



Equivalence classes

25



Equivalence classes

One common construction is to study objects ‘up-to-equivalence’ under some equivalence

relation:

• programs equal up to renaming of variables;

• lists equal up to reordering;

• propositional logic formulas up to equivalence;

• shapes independently of shifting along the x or y-axis;

• cars independently of their colour;

• rational numbers independently of any common divisors of the numerator and

denominator.

This pops up again and again – we sometimes want to avoid certain details.

26



Equivalence classes

Given an equivalence relation R on A× A, we can define the equivalence class of all the elements

related to some a ∈ A as follows:

[a]R = {x ∈ A : (a, x) ∈ R}

This characterizes all the elements related to a under R.

Now consider all the equivalence classes, written A/R:

A/R = {[a]R : a ∈ A}

27



Equivalence classes

Given an equivalence relation R on A× A, we can define the equivalence class of all the elements

related to some a ∈ A as follows:

[a]R = {x ∈ A : (a, x) ∈ R}

This characterizes all the elements related to a under R.

Now consider all the equivalence classes, written A/R:

A/R = {[a]R : a ∈ A}

27



Partitions

A partition of a set A consists of a series of non-empty sets A1, A2, A3, . . . An such that:

• Ai ∩ Aj = ∅ when i ̸= j;

• A1 ∪ A2 ∪ . . . ∪ An = A

Intuitively a partition divides the original set A into n separate pieces.

(This definition is a bit simpler than the one in the book and only works for finite sets)

Theorem Given a relation R ⊆ A× A, the equivalence classes {[a]R : a ∈ A} form a partition of A.

28



Partitions

A partition of a set A consists of a series of non-empty sets A1, A2, A3, . . . An such that:

• Ai ∩ Aj = ∅ when i ̸= j;

• A1 ∪ A2 ∪ . . . ∪ An = A

Intuitively a partition divides the original set A into n separate pieces.

(This definition is a bit simpler than the one in the book and only works for finite sets)

Theorem Given a relation R ⊆ A× A, the equivalence classes {[a]R : a ∈ A} form a partition of A.

28



Proof

Theorem Given a relation R ⊆ A× A, the equivalence classes {[a]R : a ∈ A} form a partition of A.

Proof

We need to show:

• Each equivalence class [a]R is non-empty.

• The union of all equivalence classes is A.

• The equivalence classes are disjoint.

Question

Why do these three properties hold?

29



Proof

Theorem Given a relation R ⊆ A× A, the equivalence classes {[a]R : a ∈ A} form a partition of A.

Proof

We need to show:

• Each equivalence class [a]R is non-empty as a ∈ [a]R and R is reflexive.

• The union of all equivalence classes is A. Once again, because a ∈ [a]R for each a ∈ A, the

union of all equivalence classes is equal to A.

• The equivalence classes are disjoint.

To prove this last point we must show that if x ∈ [a]R and x ∈ [b]R, then [a] = [b].

From our assumption we know that xRa and xRb.

From the symmetry and transitivity of R we can conclude that aRb and hence [a] = [b].

30



Equivalence relations

Working with equivalence classes lets us ignore certain details that are not of importance – choice

of variable names, colour of cars, position of shapes, etc.

This construction in Computer Science pops up over and over!

Let’s look at an example. . .

31



Rationals from pairs of naturals

We could define the (positive) rationals as the pairN× N. . .

But then: (1,2) ̸= (2,4) – which is not what we want.

Instead, we consider the relation (a, b) ∼ (c, d) that holds when a× d = b× c.

Question

Prove this is an equivalence relation.

32



Equivalence class of the rationals

We can define the rationals asN× N>0/ ∼, that is:

equivalence classes of pairs of natural numbers (where the second number is greater than zero);

I claim that any function we define over the rationals cannot distinguish between (1,2) and (2,4). . .

For example consider the following ‘function’:

wrong(x,y) = x + y

Claim

This does not define a function on the rationals.

33



What is wrong?

wrong(x,y) = x + y

Every function should map an input to a unique output.

This wrong function maps:

wrong(1,2) = 3

wrong(2,4) = 6

Yet (1,2) and (2,4) are in the same equivalence class.

Hence ‘wrong’ maps the same input to different outputs.

Therefore ‘wrong’ is not a valid function!

34



Functions over equivalence classes

To define a function f : A/R → B over equivalence classes, we need to check that

for all a ∈ A and a ′ ∈ A, if aRa ′ then f(a) = f(a ′).

In words, fmaps related inputs to the same output.

Or put differently, f cannot distinguish between related inputs.

35



Applications

We do this in computer science all the time:

• a compiler is a function on programs (that should not distinguish between the same

program using different variable names);

• calculating the surface area of a shape should be independent of where the shape is located;

• I can represent a set of elements as an array (provided I never observe the order of the

elements).

Working with equivalence classes gives us a mathematical construction to hide certain

unimportant information.

36



Example

Suppose we have some class Car storing information about a cars make, model, colour, etc.

We can define an equivalence relation on Car objects easily enough:

c1 ~ c2 if and only if c1.colour = c2.colour

(Why is is an equivalence relation?)

What kind of functions can we define on the equivalence classes that we get by partitioning all

cars by their colour?

37



Example

Does this define a function on equivalence classes?

showColour : Car → String

showColour(c) = toString(c.colour)

Yes! The showColour returns the same string for two cars in the same equivalence class: a red Fiat

and a red Ferrari will both produce the string “red”.

38



Example

Does this define a function on equivalence classes?

showColour : Car → String

showColour(c) = toString(c.colour)

Yes! The showColour returns the same string for two cars in the same equivalence class: a red Fiat

and a red Ferrari will both produce the string “red”.

38



Example

Does this define a function on equivalence classes?

isEV : Car → Bool

isEV (c) = isElectric(c.motor)

No! A red Tesla and a red Ferrari are in the same equivalence class (they are both red) – yet one

will produce True; the other will produce False.

39



Example

Does this define a function on equivalence classes?

isEV : Car → Bool

isEV (c) = isElectric(c.motor)

No! A red Tesla and a red Ferrari are in the same equivalence class (they are both red) – yet one

will produce True; the other will produce False.

39



Example - cars and colours

This example shows that by considering the equivalence classes of cars, we limit the information

you can use:

• We can observe a car’s colour;

• But cannot inspect it’s make, model, motor, etc.

This is a common pattern in Computer Science, where you want to hide certain implementation

details.

Equivalence classes gives us the mathematics to do so.

40



Theorems

We can use this result to turn any surjection into a bijection. . .

Given a function f : A → B, we can define the relation Rf ⊆ A× A as:

xRfx ′ iff f(x) = f(x ′)

Theorem Any surjection f gives rise to a bijection A/Rf and B.

Proof

• We need to show that Rf is an equivalence relation;

• that we can define a function f̃ from A/Rf to B;

• and that this function is a bijection.

41



Theorems

We can use this result to turn any surjection into a bijection. . .

Given a function f : A → B, we can define the relation Rf ⊆ A× A as:

xRfx ′ iff f(x) = f(x ′)

Theorem Any surjection f gives rise to a bijection A/Rf and B.

Proof

• We need to show that Rf is an equivalence relation;

• that we can define a function f̃ from A/Rf to B;

• and that this function is a bijection.

41



Theorems

We can use this result to turn any surjection into a bijection. . .

Given a function f : A → B, we can define the relation Rf ⊆ A× A as:

xRfx ′ iff f(x) = f(x ′)

Theorem Any surjection f gives rise to a bijection A/Rf and B.

Proof

• We need to show that Rf is an equivalence relation;

• that we can define a function f̃ from A/Rf to B;

• and that this function is a bijection.

41



Equivalence relation

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Question

Show that this is an equivalence relation.

42



Function

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Furthermore, we can define a function f̃ from A/Rf to B by:

f̃([x]) = f(x)

We need to check that if xRfx ′ then f̃([x]) = f̃([x ′]).

But this follows from the definition of Rf!

43



Function

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Furthermore, we can define a function f̃ from A/Rf to B by:

f̃([x]) = f(x)

We need to check that if xRfx ′ then f̃([x]) = f̃([x ′]).

But this follows from the definition of Rf!

43



Bijection

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Furthermore, we can define a function f̃ from A/Rf to B by:

f̃([x]) = f(x)

If f is a surjection, then f̃ is a bijection.

• To show f̃ is surjective, we use the fact that f is already surjective.

• To prove injectivity amounts to showing that if [x], [x ′] ∈ A/Rf and f̃([x]) = f̃([x ′]), then

[x] = [x ′].

But by definition of f̃, we know that if f̃([x]) = f̃([x ′]) then f(x) = f(x ′), but then by definition

of Rf we know that xRfx ′ and therefore [x] = [x ′].

44



Bijection

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Furthermore, we can define a function f̃ from A/Rf to B by:

f̃([x]) = f(x)

If f is a surjection, then f̃ is a bijection.

• To show f̃ is surjective, we use the fact that f is already surjective.

• To prove injectivity amounts to showing that if [x], [x ′] ∈ A/Rf and f̃([x]) = f̃([x ′]), then

[x] = [x ′].

But by definition of f̃, we know that if f̃([x]) = f̃([x ′]) then f(x) = f(x ′), but then by definition

of Rf we know that xRfx ′ and therefore [x] = [x ′].

44



Bijection

For any function f : A → B, we can construct the following equivalence relation:

xRfx ′ iff f(x) = f(x ′)

Furthermore, we can define a function f̃ from A/Rf to B by:

f̃([x]) = f(x)

If f is a surjection, then f̃ is a bijection.

• To show f̃ is surjective, we use the fact that f is already surjective.

• To prove injectivity amounts to showing that if [x], [x ′] ∈ A/Rf and f̃([x]) = f̃([x ′]), then

[x] = [x ′].

But by definition of f̃, we know that if f̃([x]) = f̃([x ′]) then f(x) = f(x ′), but then by definition

of Rf we know that xRfx ′ and therefore [x] = [x ′].

44



Why equivalence classes?

This is a first ‘non-obvious’ example of a mathematical construction that has many applications.

The previous proof relies on bringing together a great deal of material we’ve covered in the

previous weeks:

• propositional and predicate logic;

• proof sketches;

• notions of injectivity and surjectivity;

• relations and equivalence classes;

• . . .

Understanding the proof is a good way to stress test your own understanding of this material.

45



Today

• Functions and their properties

• Relations and their properties

46



Defining relations

When I first learned about relations, I really didn’t understand them well.

We are used to defining functions such as:

f(x) = x³ + 17

public int triple(int x) {...}

And we can study and define these functions without every talking about their graphs.

But many books only mention relations as being defined as a subset of A× B. . .

And don’t give you a ‘language’ to define relations.

Once we cover induction and recursion, I can give a more precise account of how to define

relations on infinite sets – and define more interesting relations than the ones we have covered

today.

47



Defining relations

When I first learned about relations, I really didn’t understand them well.

We are used to defining functions such as:

f(x) = x³ + 17

public int triple(int x) {...}

And we can study and define these functions without every talking about their graphs.

But many books only mention relations as being defined as a subset of A× B. . .

And don’t give you a ‘language’ to define relations.

Once we cover induction and recursion, I can give a more precise account of how to define

relations on infinite sets – and define more interesting relations than the ones we have covered

today.

47



Material

Modelling Computing Systems – Chapter 7

Supporting material on defining functions over equivalence classes

48


	Properties of relations
	Equivalence classes

