

1

Logic for Computer Science

08 – Relations

Wouter Swierstra

University of Utrecht

- The midterm is coming up. . . this is the last lecture with mid-term material.
- Next week Thursday: revision lecture on how to prepare for the mid-term.
- Don't worry about writing beautiful mathematical symbols in Remindo!
- Feel free to use \wedge rather than \wedge , etc. any reasonable shorthand is fine, provided I can understand what you wrote.
- All questions must be entered in Remindo but I will provide you with scrap paper.
- Practice, practice, practice!

Last time

Functions

Today

Relations

The **truth set** associated with a predicate *P* is the set:

 ${x : P(x)$ holds

We can also consider the truth set associated with predicates that take more than one argument:

 $\{(x, y, z) : R(x, y, z) \text{ holds}\}$

For example: $R(x, y, z)$ might hold if and only if the customer with ID *x* ordered product *y* on the date *z*.

The corresponding truth set then defines a subset of the set CustomerID \times ProductID \times Date.

More generally, a **relation** R on A and B is a subset of a cartesian product A *×* B.

We write R(a,b) or aRb if (a,b) *∈* R; that is, a and b are related by R.

Examples of relations

- The less-than-or equals relation on numbers, $x \le 4$
- The equality relation, $x = y$
- The 'is-an-ancestor-of' or the parenthood relation between humans.
- The 'equivalent' relation between programs, describing when two programs behave the same.
- The propositionally equivalent relation between propositions.

In the next period, you'll take the course on *Databases*.

There you'll see how to model databases and database queries using *relations* and *relational algebra* respectively.

The central idea is that we can model a database table as a *relation* – capturing the entries in the database.

For example:

 $\{(s, g, d) : s \text{ is a student who obtained the grade } g \text{ on the date } d \text{ for the logic class}\}\$

Functions and relations seem are similar concepts – but there are important differences.

- Given a function $f : A \to B$, we can construct the relation $\{(x, f(x)) : x \in A\}$, sometimes referred to as the **graph** of the function *f*.
- But not all relations are functions. For example, the 'is-an-ancestor-of' relation between me and my ancestors is not a function. Each person has many different ancestors.
- A function $f : A \rightarrow B$ associates a value in *B* with each $a \in A$; in a relation each $a \in A$ may be associated with zero, one or many elements of *B*.
- Given a relation on $A \times B$ such that each $a \in A$ is related to exactly one $b \in B$ this determines a function $f : A \rightarrow B$

A relation between two sets *A* and *B* is called a **binary** relation.

Many familiar binary relations use an **infix** operator: *⊆*, =, *⇔*, ⩽, . . .

Given a relation $R \subseteq A \times B$ we sometimes refer to A as the **source** and B as the **target** of R.

When a relation *^R* is a subset of *^A × ^A* we sometimes call *^R* ^a **homogeneous relation**;

When a relation *^R* is a subset of *^A × ^B* (for two different sets *^A* and *^B*) we call *^R* ^a **heterogeneous** relation.

- ^A *×* B is also a relation every pair of elements (a,b) where a *∈* A and b *∈* B, is related.
- The empty set *∅* is also a subset of A *×* B no two elements are related.
- The equality relation on a set A is defined by { (a,a) : a *∈* A}.
- For any relation *^R* on A *×* B, we can define the **inverse relation** on B *×* A as follows:

$$
R^{-1} = \{(b, a) : (a, b) \in R\}
$$

For example, given the relation < \subseteq $\mathbb{N} \times \mathbb{N}$, we can define the inverse relation $<^{-1}$ – more commonly known as $>$.

We can use familiar operations for manipulating sets to manipulate relations:

- \bullet *a* ≤ *b* = $(a < b)$ ∪ $(a = b)$
- Parent = Father *∪* Mother
- Son = Child *∩* Male

Given a relation *^R ⊆ ^A × ^B*, we sometimes refer to the

- the **domain** of R is given by
- {*^a ∈ ^A* : *∃^b ∈ ^B* (*a*, *^b*) *∈ ^R*}
- the **range** of *R* is given by

 ${b \in B : \exists a \in A \mid (a, b) \in R}$

Properties of relations

Just as we studied injective, surjective, or bijective functions, there are plenty of properties of relations worth studying:

- reflexive relations
- symmetric relations
- asymmetric relations
- antisymmetric relations
- transitive relations
- relational composition

A relation is **reflexive** if R(x,x) for all x.

Examples

- equality
- propositionally equivalent formulas;

Non-examples

- $x < y$ (where x and y are numbers);
- The strict-subset relation on sets.
- Is-a-parent-of relation between people.

A relation is **reflexive** if R(x,x) for all x.

Examples

- equality
- propositionally equivalent formulas;

Non-examples

- $x < y$ (where x and y are numbers);
- The strict-subset relation on sets.
- Is-a-parent-of relation between people.

If a relation *^R* is 'never reflexive', that is, *∀^x* ¬(*xRx*) we call *^R* **irreflexive**.

A relation is **symmetric** if R(x,y) implies R(y,x).

Examples

- equality
- propositionally equivalent formulas;
- the 'is a sibling of' relation;

Non-examples

- $x \leq y$ (where x and y are numbers);
- The subset relation on sets.
- The graph of the sort function.

A relation is **asymmetric** if $R(x,y)$ implies $\neg R(y,x)$

Question: Can a relation be both symmetric and asymmetric? What is an example of an asymmetric relation?

A relation is **asymmetric** if $R(x,y)$ implies $\neg R(y,x)$

Question: Can a relation be both symmetric and asymmetric? What is an example of an asymmetric relation?

Examples

- The < relation on numbers;
- The 'is-a-strict-prefix-of' relation on strings.

• . . .

A relation is **antisymmetric** if $R(x,y)$ and $R(y,x)$ implies $x = y$.

Examples

- Equality;
- $\cdot \leq$ on natural numbers;
- *⊆* on sets.

Non-examples

• Equivalence of propositional formulas.

A relation is **transitive** if R(x,y) and R(y,z) implies R(x,z).

Question: What examples of such relations?

A relation is **transitive** if R(x,y) and R(y,z) implies R(x,z).

Question: What examples of such relations?

Examples

• Subsets, equality, comparison of numbers, prefixes of strings, . . .

We can compose relations, just as we compose functions.

Given a relation R on A *×* B and a relation S on B *×* C, we can form the composed relation R *◦* S on ^A *×* C as follows:

$$
R \circ S = \{(a, c) : \text{ there is some } b \in B \text{ such that } aRb \land bSc\}
$$

We can rephrase some of these properties in terms of subsets:

If *^R* is a relation on *^A × ^A*

- *R* is reflexive when it contains the equality relation, $= \subseteq R$
- *R* is symmetric when $R^{-1} \subseteq R$ (or equivalently, when $R \subseteq R^{-1}$)
- *^R* is transitive when *^R ◦ ^R ⊆ ^R*

An **equivalence relation** is a relation that is:

- reflexive $R(x,x)$ for all x.
- symmetric $R(x,y)$ implies $R(y,x)$
- transitive $R(x,y)$ and $R(y,z)$ implies $R(x,z)$

The canonical example of such a relation is equality.

An **equivalence relation** is a relation that is:

- reflexive $R(x,x)$ for all x.
- symmetric $R(x,y)$ implies $R(y,x)$
- transitive $R(x,y)$ and $R(y,z)$ implies $R(x,z)$

The canonical example of such a relation is equality.

But many others exist!

Equivalence classes

One common construction is to study objects 'up-to-equivalence' under some equivalence relation:

- programs equal up to renaming of variables;
- lists equal up to reordering;
- propositional logic formulas up to equivalence;
- shapes independently of shifting along the x or y-axis;
- cars independently of their colour;
- rational numbers independently of any common divisors of the numerator and denominator.

This pops up again and again – we sometimes want to avoid certain details.

Given an equivalence relation R on $A \times A$, we can define the **equivalence class** of all the elements related to some $a \in A$ as follows:

$$
[a]_R = \{x \in A : (a, x) \in R\}
$$

This characterizes all the elements related to *a* under *R*.

Given an equivalence relation *^R* on *^A × ^A*, we can define the **equivalence class** of all the elements related to some $a \in A$ as follows:

$$
[a]_R = \{x \in A : (a, x) \in R\}
$$

This characterizes all the elements related to *a* under *R*.

Now consider all the equivalence classes, written *A*/*R*:

$$
A/R = \{ [a]_R : a \in A \}
$$

A **partition** of a set *A* consists of a series of non-empty sets $A_1, A_2, A_3, \ldots, A_n$ such that:

- $A_i \cap A_j = \emptyset$ when $i \neq j$;
- *^A*¹ *∪ ^A*² *∪* . . . *∪ ^Aⁿ* = *^A*

Intuitively a partition divides the original set *A* into *n* separate pieces.

(This definition is a bit simpler than the one in the book and only works for finite sets)

A **partition** of a set *A* consists of a series of non-empty sets $A_1, A_2, A_3, \ldots, A_n$ such that:

- $A_i \cap A_j = \emptyset$ when $i \neq j$;
- *^A*¹ *∪ ^A*² *∪* . . . *∪ ^Aⁿ* = *^A*

Intuitively a partition divides the original set *A* into *n* separate pieces.

(This definition is a bit simpler than the one in the book and only works for finite sets)

Theorem Given a relation $R \subseteq A \times A$, the equivalence classes $\{[a]_R : a \in A\}$ form a partition of *A*.

Theorem Given a relation $R \subseteq A \times A$, the equivalence classes $\{[a]_R : a \in A\}$ form a partition of *A*.

Proof

We need to show:

- Each equivalence class $[a]_R$ is non-empty.
- The union of all equivalence classes is *A*.
- The equivalence classes are disjoint.

Question

Why do these three properties hold?

Proof

Theorem Given a relation $R \subseteq A \times A$, the equivalence classes $\{|q|_{\mathcal{P}} : q \in A\}$ form a partition of *A*.

Proof

We need to show:

- Each equivalence class $[a]_R$ is non-empty as $a \in [a]_R$ and R is reflexive.
- The union of all equivalence classes is *A*. Once again, because $a \in [a]_R$ for each $a \in A$, the union of all equivalence classes is equal to *A*.
- The equivalence classes are disjoint.

To prove this last point we must show that if $x \in [a]_R$ and $x \in [b]_R$, then $[a] = [b]$.

From our assumption we know that *xRa* and *xRb*.

From the symmetry and transitivity of *R* we can conclude that aRb and hence $[a] = [b]$.

Working with equivalence classes lets us ignore certain details that are not of importance – choice of variable names, colour of cars, position of shapes, etc.

This construction in Computer Science pops up over and over!

Let's look at an example. . .

We could define the (positive) rationals as the pair $\mathbb{N} \times \mathbb{N}$...

But then: $(1,2) \neq (2,4)$ – which is not what we want.

Instead, we consider the relation $(a, b) \sim (c, d)$ that holds when $a \times d = b \times c$.

Question

Prove this is an equivalence relation.

```
We can define the rationals as \mathbb{N} \times \mathbb{N}_{>0} / \sim, that is:
```
equivalence classes of pairs of natural numbers (where the second number is greater than zero);

I claim that any function we define over the rationals cannot distinguish between (1,2) and (2,4). \dots

For example consider the following 'function':

```
wrong(x,y) = x + y
```
Claim

This does not define a function on the rationals.

wrong $(x,y) = x + y$

Every function should map an input to a *unique* output.

This wrong function maps:

 $wrong(1,2) = 3$

 $wrong(2,4) = 6$

Yet (1,2) and (2,4) are *in the same equivalence class*.

Hence 'wrong' maps *the same input* to **different** outputs.

Therefore 'wrong' is not a valid function!

To define a function $f : A/R \to B$ over equivalence classes, we need to check that

for all $a \in A$ and $a' \in A$, if aRa' then $f(a) = f(a')$.

In words, *f* maps *related* inputs to the *same* output.

Or put differently, *f* cannot distinguish between related inputs.

We do this in computer science all the time:

- a compiler is a function on programs (that should not distinguish between the same program using different variable names);
- calculating the surface area of a shape should be independent of *where* the shape is located;
- I can represent a set of elements as an array (provided I never observe the *order* of the elements).

Working with equivalence classes gives us a mathematical construction to *hide* certain unimportant information.

Suppose we have some class Car storing information about a cars make, model, colour, etc.

We can define an equivalence relation on Car objects easily enough:

```
c_1 ~ c_2 if and only if c_1.colour = c_2.colour
```
(Why is is an equivalence relation?)

What kind of functions can we define on the equivalence classes that we get by partitioning all cars by their colour?

```
showColour : Car → String
showColour(c) = toString(c.colour)
```

```
showColour : Car → String
showColour(c) = toString(c.colour)
```
Yes! The showColour returns the same string for two cars in the same equivalence class: a red Fiat and a red Ferrari will both produce the string "red".

isEV : Car *→* Bool isEV (c) = isElectric(c.motor)

```
isEV : Car → Bool
isEV (c) = isElectric(c.motor)
```
No! A red Tesla and a red Ferrari are in the same equivalence class (they are both red) – yet one will produce True; the other will produce False.

This example shows that by considering the *equivalence classes* of cars, we limit the information you can use:

- We can observe a car's colour;
- But cannot inspect it's make, model, motor, etc.

This is a common pattern in Computer Science, where you want to *hide* certain implementation details.

Equivalence classes gives us the mathematics to do so.

We can use this result to turn any *surjection* into a bijection. . .

Theorems

We can use this result to turn any *surjection* into a bijection. . .

```
Given a function f : A \rightarrow B, we can define the relation R_f \subseteq A \times A as:
```
 xR_f *x*^{\prime} iff $f(x) = f(x')$

Theorem Any surjection *f* gives rise to a bijection *A*/*R^f* and *B*.

Theorems

We can use this result to turn any *surjection* into a bijection. . .

```
Given a function f : A \rightarrow B, we can define the relation R_f \subseteq A \times A as:
```
 xR_f *x*^{\prime} iff $f(x) = f(x')$

Theorem Any surjection *f* gives rise to a bijection *A*/*R^f* and *B*.

Proof

- \bullet . We need to show that R_f is an equivalence relation;
- that we can define a function f from A/R_f to *B*;
- and that this function is a bijection.

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

$$
x R_f x' \text{ iff } f(x) = f(x')
$$

Question

Show that this is an equivalence relation.

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

 xR_f *x*^{\prime} iff $f(x) = f(x')$

Furthermore, we can define a function f from A/R_f to B by:

 $\widetilde{f}([x]) = f(x)$

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

 xR_f *x*^{\prime} iff $f(x) = f(x')$

Furthermore, we can define a function f from A/R_f to B by:

 $\widetilde{f}([x]) = f(x)$

We need to check that if $xR_f x'$ then $f([x]) = f([x'])$.

But this follows from the definition of *R^f* !

Bijection

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

 xR_f *x*^{\prime} iff $f(x) = f(x')$

Furthermore, we can define a function f from A/R_f to B by:

 $\widetilde{f}([x]) = f(x)$

If f is a *surjection*, then \widetilde{f} is a *bijection*.

Bijection

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

 xR_f *x*^{\prime} iff $f(x) = f(x')$

Furthermore, we can define a function f from A/R_f to B by:

 $\widetilde{f}([x]) = f(x)$

If *f* is a *surjection*, then \widetilde{f} is a *bijection*.

• To show \widetilde{f} is surjective, we use the fact that f is already surjective.

Bijection

For any function $f : A \rightarrow B$, we can construct the following equivalence relation:

 xR_f *x*^{\prime} iff $f(x) = f(x')$

Furthermore, we can define a function f from A/R_f to B by:

 $\widetilde{f}([x]) = f(x)$

If f is a *surjection*, then \widetilde{f} is a *bijection*.

- To show \widetilde{f} is surjective, we use the fact that f is already surjective.
- To prove injectivity amounts to showing that if $[x]$, $[x'] \in A/R_f$ and $f([x]) = f([x'])$, then $[x] = [x']$. But by definition of *f*, we know that if $f([x]) = f([x'])$ then $f(x) = f(x')$, but then by definition of R_f we know that $xR_f x'$ and therefore $[x] = [x']$.

This is a first 'non-obvious' example of a mathematical construction that has many applications.

The previous proof relies on bringing together a great deal of material we've covered in the previous weeks:

- propositional and predicate logic;
- proof sketches;
- notions of injectivity and surjectivity;
- relations and equivalence classes;

 \bullet . . .

Understanding the proof is a good way to stress test your own understanding of this material.

- Functions and their properties
- Relations and their properties

Defining relations

When I first learned about relations, I really didn't understand them well.

We are used to defining functions such as:

 $f(x) = x^3 + 17$

```
public int triple(int x) {...}
```
And we can study and define these functions without every talking about their graphs.

Defining relations

When I first learned about relations, I really didn't understand them well.

We are used to defining functions such as:

 $f(x) = x^3 + 17$

public int triple(int x) {**...**}

And we can study and define these functions without every talking about their graphs.

But many books only mention relations as being defined as a subset of A *×* ^B. . .

And don't give you a 'language' to **define** relations.

Once we cover induction and recursion, I can give a more precise account of how to define relations on infinite sets – and define more interesting relations than the ones we have covered today.

Modelling Computing Systems – Chapter 7

Supporting material on defining functions over equivalence classes