
Logic for Computer Science

12 – Review

Wouter Swierstra

University of Utrecht

1



Last time

Inductive definitions

2



This lecture

Review of material covered in the mid-term

3



Review

• Introduction

• Propositions

• Sets

• Boolean algebra

• Predicate logic

• Proof strategies

• Functions

• Relations

4



Exam practical matters

Come on time

I will provide you with scrap paper.

Be sure to bring a photo ID, Solis login credentials, and a pen.

The exam lasts for 2 hours, which should be plenty of time.

Extra time students will have an extra 20 minutes.

There is also a ‘Minder Massaal’ room – contact me directly for more information.

5



Introduction

• What is logic?

• Why study logic?

• What is an invariant?

6



Propositions – material

• Propositional logic formulas

• Truth tables

• Proofs and properties (commutativity, associativity, de Morgan’s laws, etc.)

7



Propositions – questions

Possible questions may include:

• Complete this truth table. . .

• Understand the syntax: draw a syntax tree, distinguish the precedence of operators. . ..

• Prove these two formulas are equivalent. . ..

But a solid understanding of propositional logic is necessary to understand the more complicated

proofs in later chapters.

Don’t worry about memorizing all possible laws about propositional logic. It can be useful to

recognise de Morgan’s laws, contraposition, etc. – but you won’t need to reproduce them on the

exam.

8



Propositions – questions

Possible questions may include:

• Complete this truth table. . .

• Understand the syntax: draw a syntax tree, distinguish the precedence of operators. . ..

• Prove these two formulas are equivalent. . ..

But a solid understanding of propositional logic is necessary to understand the more complicated

proofs in later chapters.

Don’t worry about memorizing all possible laws about propositional logic. It can be useful to

recognise de Morgan’s laws, contraposition, etc. – but you won’t need to reproduce them on the

exam.

8



Sets – material

• Notions such as sets, elements, singletons, empty set, cardinality, powersets, . . .

• Various operations for combining sets, such as unions, complement, intersections, cartesian

products, . . .

• Venn diagrams

• The subset relation, A ⊆ B when ∀x (x ∈ A ⇒ x ∈ B)

• Equality between sets, A = B if and only if ∀x (x ∈ A ⇔ x ∈ B)

9



Sets – questions

• Prove that the sets X and Y are equal.

• Draw or interpret a Venn diagram.

• Model some structure as a set – similar to the model of the computer screen that we saw in

the lectures.

10



Boolean algebra and circuits – material

• Boolean algebras & their properties

• Duality

• Circuit diagrams & their relation with boolean algebras

• Binary numbers and adders

11



Boolean algebras – questions

• Understand or optimize a given circuit;

• Apply duality;

• Add or convert binary numbers.

• Prove an equality in any boolean algebra;

I understand that proofs of theorems for boolean algebras are not always ‘intuitive’ – and require

certain creative steps.

On the exam, I typically provide enough hints to point you in the right direction: use distributivity

and the fact that x + x = x to prove Y.

12



Laws of boolean algebras

You will need to know the 10 (or five) laws that form the definition of a boolean algebra.

If you need any auxiliary theorem/result to complete a proof, I will provide you with this in the

question.

So there is no need to memorise every result in this chapter.

13



Predicate logic – material

• Predicates, universal and existential quantifier.

But also. . .

• Scope, free variables and bound variables

• Modelling natural language statements using predicate logic

• Laws for manipulating formulas in predicate logic

14



Predicate logic – material

• Predicates, universal and existential quantifier.

But also. . .

• Scope, free variables and bound variables

• Modelling natural language statements using predicate logic

• Laws for manipulating formulas in predicate logic

14



Predicate logic – questions

• Understand a predicate logic formula;

• Formalize some notion from some domain – such as a family tree – using predicate logic;

• Use the rules for manipulating formulas using predicate logic to prove two formulas

equivalent:

¬∀x P(x) ⇔ ∃x ¬P(x)

∀x (P(x)∧ Q(x)) ⇔ (∀x P(x))∧ (∀x Q(x))

. . .

15



Modelling with predicate logic

Given some description in natural language, such as the specification of a Sudoku puzzle, how to I

turn this into a formula in predicate logic?

There is unfortunately no ‘recipe’ of steps that I can give you that always works.

• Study examples, such as those covered in class or in the book;

• Do you want to make a statement about all things? Then typically start with a universal

quantifier;

• Do you want to make a statement about some thing? Then typically start with a existential

quantifier;

• If the statement makes some conditions, ∀n > 3 the property P(n) holds – this is typically

translated to logical implication.

• Try to break the statement into smaller pieces;

• Re-use other predicates/formulas you may have already defined (such as using the Sister(x,y)

predicate to define Aunt(x,y)).

16



Modelling with predicate logic

Given some description in natural language, such as the specification of a Sudoku puzzle, how to I

turn this into a formula in predicate logic?

There is unfortunately no ‘recipe’ of steps that I can give you that always works.

• Study examples, such as those covered in class or in the book;

• Do you want to make a statement about all things? Then typically start with a universal

quantifier;

• Do you want to make a statement about some thing? Then typically start with a existential

quantifier;

• If the statement makes some conditions, ∀n > 3 the property P(n) holds – this is typically

translated to logical implication.

• Try to break the statement into smaller pieces;

• Re-use other predicates/formulas you may have already defined (such as using the Sister(x,y)

predicate to define Aunt(x,y)). 16



Proof strategies

• Introduction and elimination strategies for logical operators

• Introduction and elimination strategies for quantifiers

• ‘Derived’ proof strategies, such as contraposition, that can be justified using these strategies.

17



Proof strategies – questions

• What is the introduction/elimination strategy for X?

• Identify the proof strategies used in this proof;

• Which step in the following proof is wrong?

• Writing proofs using strategies - practice with the extra exercises!

18



How to write proofs

Once again, it is undecidable in general how to prove a given formula in predicate logic – there’s

no recipe I can give you.

For most of the exercises, however, the following approach can help:

• Write down precisely as possible what your assumptions are and what you are trying to

prove.

• Try to apply the introduction strategies on the goal you are trying to prove.

• If you’re lucky, this is all you need to do; sometimes – for example when you need to prove a

conjunction – this breaks the problem into smaller pieces.

• If you get stuck, look at your assumptions. What elimination strategy can you apply to your

assumptions? Does this teach you anything new?

• There’s no shame in being stuck – some proofs require creativity!

19



Disjunction elimination

One of the hardest strategies to understand is that of disjunction elimination.

Question

Prove that for all sets A and B, A ∪ B = B ∪ A.

Or slightly harder:

Prove that for all sets A and B, A ∪ (B ∩ C)⊆ (A ∪ B) ∩ (A ∪ C)

20



Existence proofs

• Existential introduction is fairly straightforward: to proven ∃x P(x) you get to invent some

element a, but need to show that P(a).

Example ∃x x− 7 = 0 (and variations on this theme using quadratic equations in the book).

• Existential elimination is harder: if you know ∃x P(x) how can you use this?

You’re allowed to assume that there is some arbitary a for which P(a) holds. . .

. . . but you don’t know anything about a except that P(a) holds.

21



Careful with assumptions; careful with names

A lot of the proof strategies start with ‘Assume x is arbitrary. . .’

It is left a bit implicit that this x has to be a fresh name, that is not used anywhere else in the proof!

Similarly, be careful about the scope of your assumptions. They should never escape the

surrounding ‘box’.

22



Functions

• Definition of a function;

• Graphs of a function;

• Function composition;

• Function properties, such as injections, surjections and bijections;

• Using functions to compare the size of (infinite) sets;

• (6.4 - you should know about countable and uncountable sets - but no need to study the

(proof of) Schröder-Bernstein Theorem)

• (6.5 is not part of the exam - on the Knaster-Tarski Theorem)

23



Properties of functions and relations

How can I show that the function f : A → B is surjective?

We need to show:

∀b ∈ B ∃a ∈ A f(a) = b

Prove that for every b ∈ B there is some a ∈ A such that f(a) = b. In other words – find an input

mapped to every possible element of B.

Example: the length mapping Strings to Integers is surjective because for every n, the string

consisting of repeating the character ‘a’ n times has length n.

24



Properties of functions and relations

How can I show that the function f : A → B is surjective?

We need to show:

∀b ∈ B ∃a ∈ A f(a) = b

Prove that for every b ∈ B there is some a ∈ A such that f(a) = b. In other words – find an input

mapped to every possible element of B.

Example: the length mapping Strings to Integers is surjective because for every n, the string

consisting of repeating the character ‘a’ n times has length n.

24



Properties of functions and relations

How can I show that the function f : A → B is injective?

We need to show:

∀a ∈ A ∀a ′ ∈ A f(a) = f(a ′) ⇒ a = a ′

Assume that for some arbitrary a and a ′, we have that f(a) = f(a ′). From this assumption, show

that a = a ′.

Example: The doubling function on natural numbers is injective – there are no two numbers that

get mapped to the same double.

But the sin : R → [0, 1] is not injective – it crosses 0 infinitely many times.

25



Properties of functions and relations

How can I show that the function f : A → B is injective?

We need to show:

∀a ∈ A ∀a ′ ∈ A f(a) = f(a ′) ⇒ a = a ′

Assume that for some arbitrary a and a ′, we have that f(a) = f(a ′). From this assumption, show

that a = a ′.

Example: The doubling function on natural numbers is injective – there are no two numbers that

get mapped to the same double.

But the sin : R → [0, 1] is not injective – it crosses 0 infinitely many times.

25



Relations

• Definition of a relation;

• Composing, inverting, unions or intersections of relations

• Properties of relations: reflexive, irreflexive, symmetric, antisymmetric, asymmetric,

transitive, . . .

• Equivalence relations, equivalence classes and partitions

• (Partial orders and total orders – covered in the book, not in the slides and will not be on the

exam)

26



Properties of functions and relations

How can I show that the relation R is transitive?

Follow the definition and the corresponding proof strategies:

Assume that xRy and yRz. Can we prove xRz?

Example The subset relation,⊆, is transitive.

27



Properties of functions and relations

How can I show that the relation R is transitive?

Follow the definition and the corresponding proof strategies:

Assume that xRy and yRz. Can we prove xRz?

Example The subset relation,⊆, is transitive.

27



Material

Modelling Computing Systems Chapter 1-7 with the exception of 6.5

28



Good luck on your mid-term exam!

28


