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Last time

Natural deduction
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This lecture

Semantics of computer programs

A logic for reasoning about them
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Syntax of programming language

The BNF notation can also be used to define programming languages:

e ::= n | x | e+ e | e× e | …

b ::= true | false | b || b | b && b | e < e | …

p ::= x := e | p; p | if b then p else p fi | while b do p end

We distinguish between (integer) expressions e and boolean expressions b.

We haven’t completely defined all the operations in e and b (such as negation, subtraction, etc.) –

but this won’t be the focus of this lecture.

We assume we have some set of variables V – implicitly we use x ∈ V throughout the above

definitions; similarly, n ∈ N, for instance.
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Semantics?

But this doesn’t say anything about a program’s behaviour…

How do these programs behave?

How can we define the semantics of programs?

If logic is about studying proofs – how can we prove a program is correct?
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Semantics for expressions

e ::= n | x | e+ e | e× e | …

b ::= true | false | b || b | b && b | e < e | …

In the previous lecture, I sketched how to give a semantics to propositional logic formulas;

We can use the same technique here…

IdeaWe can write a pair of inductively defined functions that take syntax, evaluate it to a number

or boolean:

JeK : Int JbK : Bool

6



Semantics for expressions

e ::= n | x | e+ e | e× e | …

b ::= true | false | b || b | b && b | e < e | …

In the previous lecture, I sketched how to give a semantics to propositional logic formulas;

We can use the same technique here…

IdeaWe can write a pair of inductively defined functions that take syntax, evaluate it to a number

or boolean:

JeK : Int JbK : Bool
6



Semantics for expressions

e ::= n | x | e+ e | e× e | …

b ::= true | false | b1 || b2 | b1 && b2 | e1 < e2 | …

IdeaWe can write a pair of inductively defined functions that take syntax, evaluate it to a number

or boolean.

But – this doesn’t quite work: what is the value of x + 3?

This depends on the last value we assigned to the variable x – we need to keep track of the

computer’s memory.
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Memory

We can mode the contents of the computer’s memory as a function V → Int – this function tells

us for each variable in V what its current value is.

We can use this function to write a pair of inductively defined functions that take syntax, evaluate

it to a number or boolean.

JeK : (V → Int) → Int JbK : (V → Int) → Bool

Just as we saw for the semantics of propositional logic, we use this function to associate meaning

with variables.
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Example

Previously we didn’t know the meaning of x + 3 – but what if we are given the current memory

σ : V → Int and we know that σ(x) = 7:

Jx+ 3Kσ = JxKσ + J3Kσ = σ(x) + 3 = 7+ 3 = 10

We can compute the integer associated with expressions and the boolean value associated with

boolean expressions provided we know the current state of the computer’s memory.

Note: the semantics defined in this style is ‘obvious’ – but the addition symbol in Jx+ 3Kσ andJxKσ + J3Kσ are very different! The first refers to the syntax of our language—it could equally

well have been written add(x,y), whereas the second is the addition function on Int.
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Semantics for statements

p ::= x := e

| p; p

| if b then p else p

| while b do p

How should I define a semantics?

A statement such as:

x := 17

doesn’t return any interesting result – but rathermodifies the state of our program

Any semantics for our language should carefully describe how the state changes…
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

We start execution from some begin state – let’s assume that the variables x, p and i all start as

0,1,2 respectively. That is initially we’re in a state σ which satisfies:

σ(x) = 0 σ(p) = 1 σ(i) = 2

Now let’s run this program step by step…

11



Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

σ(x) = 0 σ(p) = 1 σ(i) = 2

→

σ(x) = 3 σ(p) = 1 σ(i) = 2
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

σ(x) = 3 σ(p) = 1 σ(i) = 2

→

σ(x) = 3 σ(p) = 0 σ(i) = 2
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Example execution
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i := i+1;
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;
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}
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

σ(x) = 3 σ(p) = 3 σ(i) = 3

→

σ(x) = 3 σ(p) = 6 σ(i) = 3
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

σ(x) = 3 σ(p) = 6 σ(i) = 3

→

σ(x) = 3 σ(p) = 6 σ(i) = 4
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{
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}
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Example execution

x := 3;

p := 0;

i := 1;

while (i <= x)

{

p := p+i;

i := i+1;

}

Our program terminates in the following state:

σ(x) = 3 σ(p) = 6 σ(i) = 4
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Making this more precise…

This gives some idea of how a program is executed.

But this example raises some interesting questions:

• What would have happened if we would have used a different initial state? Would the results

have been the same?

• Does every program terminate in a finite number of steps?

• Can our program ‘go wrong’ somehow – dividing by zero or accessing unallocated memory?

My goal isn’t to answer all these questions – but just to highlight the kind of issues you need to

address when making the semantics of programming languages precise.

Let’s try to give a mathematical account of program execution.
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Modelling state

We model the current state of our computer’s memory (storing the value of all our variables) as

function:

σ : V → Int

If we want to know the value of a given variable x, we can simply look it up σ(x);

We will sometimes also need to update the current memory.

We write σ[x 7→ n] for the memory that is the same as σ for all variables in V except x, where it

stores the value n.

In other words, this updates the current memory at one location, setting the value for x to n.
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The meaning of our programs

Using the inference rule notation from the previous lecture, we can formalize the semantics of our

language.

The key idea is that we define a relation on While× State× State, written as follows:

〈p,σ〉 → σ ′

This relation holds when executing the program p from the initial state σ terminates in the final

state σ ′.

This formalizes the example we had a few slides ago, where we ‘stepped through’ the execution of

a program to compute the final state after executing a program.

This relation gives an operational semantics for our programs, describing how to execute a

program step by step.
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Operational semantics

p ::= x := e | p; p | if b then p else p fi | while b do p end

We have four language constructs – we’ll only need very few rules to describe their behaviour (in

contrast to, say, natural deduction rules for propositional logic).

• Assignments – x := e

• Sequential composition – p; p

• Conditionals – if b then p else p fi

• Loops – while b do p end
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Assignment

JeKσ = n
Assignment

〈x := e,σ〉 → σ[x 7→ n]

There is one rule for handling assignment.

The assignment statement always terminates in one step.

Starting in the state σ, executing x := e produces a new state, σ[x 7→ n], that updates the memory

location for x to store the value of e.

For example, given a state σ satisfying σ(y) = 3, we can execute the command x := y+ 2 by:

Jy+ 2Kσ = 5

〈x := y+ 2,σ〉 → σ[x 7→ 5]
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Conditionals

JbK(σ) = true 〈p1,σ〉 → σ ′
If-true〈 if  b  then p1  else  p2  fi , σ 〉→ σ ′

JbK(σ) = false 〈p2,σ〉 → σ ′
If-false〈 if  b  then  p1  else  p2  fi , σ 〉→ σ ′

There are two rules for evaluating if-then-else statements:

• if the guard b is true, we continue evaluating the then branch, leaving the state unchanged;

• if the guard b is false, we continue evaluating the else branch, leaving the state unchanged;
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Example

Suppose we start from a state σ satisfying σ(x) = 3 and σ(y) = 10

We can execute the following program:

if x < y then r := x else r := y

Using the previous derivation rules:

Jx < yK(σ) = true

JxK(σ) = 3
Assignment

〈 r := x , σ 〉→ σ[r 7→ 3]

〈 if x < y then r := x else r := y fi , σ 〉→ σ[r 7→ 3]
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Sequential composition

〈 p1 , σ 〉→ σ ′ 〈 p2 , σ ′ 〉→ σ ′′
Seq

〈 (p1; p2) , σ 〉→ σ ′′

The rule for sequential composition chains together the execution of two programs, p1 and p2:

• if executing p1 from the initial state σ terminates in a state σ ′;

• and executing p2 from σ ′ terminates in a state σ ′′;

• the composite program p1; p2 terminates in σ ′′.
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Loops

JbK(σ) = false
While-false〈 while b do p , σ 〉→ σ

JbK(σ) = true 〈 p , σ 〉→ σ ′ 〈 while b do p , σ ′ 〉→ σ ′′
While-true〈 while b do p , σ 〉→ σ ′′

We need two rules to handle loops:

• if the guard b is false, we do not enter the loop body or change the state – but rather halt in

the current state σ;

• if the guard b is true, we execute the loop body p, and then continue executing the main

while loop.
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Operational semantics

These six rules determine precisely how a program is executed.

Given any initial state σ and program p, we can repeatedly apply these rules to determine if the

program terminates or not.

This formalizes the process I went through with large example I did at the beginning of the lecture:

showing how to evaluate an example program from some initial state.
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Labelled transition systems

This semantics forms a labelled transition system:

• the set of states are the current program p and memory σ;

• our operational semantics determine the transition relation between our states;

• if we extend our language with other effects, such as opening a window, writing to stdout, or

asking the user to input a character – we can add further actions to our system to observe

these effects.
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From operational semantics to logic

These operational semantics determine how a program is executed from a given initial state σ.

But consider the following mini-program:

if x < y then r := x else r := y

Can we prove that after execution r will store the minimal value of x and y?

This requires reasoning about all possible states – rather than one initial state.

To perform this kind of reasoning, we need a logic to reason about all possible executions.

This motivates the shift from operational semantics to program logic.
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Specifications

A formal specification is a mathematical description of what a program should do.

Such a specification ignores many important details, such as the non-functional requirements

about how fast the program is, the language used for its implementation, the development cost,

etc.

Instead, we use a formal specification to answer one question:

Is this program doing what it should?
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Specificiations

We will give specifications in the form of a pre- and post-condition that are predicates on our

states.

Intuitively, the precondition captures the assumptions the program makes about the initial state;

The postcondition expresses the properties that are guaranteed to hold after the program has

finished executing.
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Notation

To define our logic for reasoning about programs, we introduce the following notation:

{ P } p { Q }

pre-condition programme post-condition

For each state σ that satisfies the precondition P,

if executing 〈p,σ〉 terminates in some final state τ, then τmust satisfy Q.

We’ll define this – once again – using inference rules. But’s let look at some examples first.
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Examples

• { x = 3} x := x + 1 { x = 4}

Unsurprising: if x = 3, after executing x := x + 1, we know x = 4.

• { x = A∧ y = B} z:= x; x := y; y := z { x = B∧ y = A}

This is more interesting: it works for any values of A and B – this describes many possible

executions, starting from some state for which the precondition holds.

• { true } while true do p := 0 od {p = 500 }

Note that the postcondition only makes a statement about the final state. If the program never

terminates, it trivially satisfies any postcondition!
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Examples

{ true }

x := 3;

p := 0;

i := 1;

while i <= x do

p := p + i;

i := i+1

od

{ p = 6 }

How can we write a derivation proving this? What are the inference rules that we can use?
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Hoare logic

We’ll give a handful of inference rules for proving statements of the form {P} p {Q}.

Together these define a logic known as Hoare logic – named after Tony Hoare, a British computer

scientist who pioneered the approach together with Edsger Dijkstra, Robert Floyd, and others.
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Hoare logic – assignment

What rule should we use for assignment? We’ve seen one example:

{ x = 3} x := x + 1 { x = 4}

We could generalise this:

{ x = N} x := x + 1 { x = N + 1}

But what if we want to assign another expression than x + 1?

Or what if the pre- and postcoditions are not a simple equality?

What’s the most general rule?
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Hoare logic – assignment

Assign
{ Q[x\e] } x := e { Q }

• We write Q[x\e] for the result of replacing all the occurrences of x with e in Q.

• This rule seems backwards! It helps to read it back to front: in order for Q to hold after the

assignment x := e, the precondition Q[x\e] should already hold.

Let’s look at some examples…
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Hoare logic – assignment

Assign
{ Q[x\e] } x := e { Q }

Here are three different examples of this rule in action:

Assign
{ y = 3 } x := 3 { y = x }

Assign
{ x = N + 1 } x := x - 1 { x = N }

Assign
{ x + y = V } z := x + y { z = V }
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Hoare logic – conditional

???? ???? If{ P } if b then p1 else p2 { Q }

What happens when we execute an if statement?

We will continue executing either the ‘then-branch’ or the ‘else-branch’; if both branches manage

to end in a state satisfying Q, the entire if-statement will.
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Hoare logic – conditional

{ P∧ b } p1 {Q} { P∧ ¬b } p2 {Q}
If{ P } if b then p1 else p2 { Q }

By checking whether the guard b holds or not, we learn something. As a result, the precondition

changes in both branches of the if-statement.

Question

Use the two rules we have seen so far to show that:

{ 0⩽ x⩽ 5 } if x < 5 then x := x+1 else x := 0 fi { 0⩽ x⩽ 5 }
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Hoare logic – composition

{ P } p1 {R} { R } p2 {Q}
Seq

{ P } p1; p2 { Q }

The rule for composition of programs is beautiful – it may remind you of function composition.

If we know that P holds of our initial state, we can run p1 to reach a state satisfying R;

But now we can run p2 on this state, to produce a state satisfying Q.
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Hoare logic – bookkeeping

{ P } p1 {R} { R } p2 {Q}
Seq

{ P } p1; p2 { Q }

If you look at this rule though, you may need to be very lucky to be able to use it: the

postcondition of p1 and precondition of p2 must match exactly…

This rarely happens in larger derivations.

To still be able to use such rules, we need an additional ‘bookkeeping’ rule.
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Hoare logic – consequence

P ′ ⇒ P { P } p {Q} Q ⇒ Q ′
Consequence

{ P ′ } p { Q ′ }

The rule of consequence states that we can change the pre- and postcondition provided:

• the precondition is stronger – that is, P ′ ⇒ P;

• the postcondition is weaker – that is, Q ⇒ Q ′;

We can justify this rule by thinking back to what a statement of the form {P} p {Q}means:

Hoare logic
For each state σ that satisfies the precondition P,

if executing 〈p,σ〉 terminates in some final state τ, then τmust satisfy Q.
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Hoare logic – while

{ ???∧ b } p {???}
While

{ P } while b do p od { ???∧ ¬b }

The general structure of the rule for loops should be along these lines:

• some precondition P should hold initially;

• the loop body may assume that the guard b is true;

• after completion, we know that the guard b is no longer true.

But how should we fill in the question marks?
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Hoare logic – while

{ P∧ b } p {???}
While

{ P } while b do p od { ???∧ ¬b }

When we first enter the loop body, we know that P still holds.
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Hoare logic – while

{ P∧ b } p {P}
While

{ P } while b do p od { ???∧ ¬b }

After completing the loop body, we may need to execute the loop body again (and again and

again and again).

The precondition of p should continue to hold during execution.
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Hoare logic – while

{ P∧ b } p {P}
While

{ P } while b do p od { P∧ ¬b }

After running the loop body over and over again, the postcondition of the entire while statement

says that both P and ¬b hold.

We call P the loop invariant – it continues to hold throughout the execution of the while loop.
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Example

Question

Give a derivation of the following statement:

{ x ≥ 5 } while x > 5 do x := x - 1 od { x ≥ 5∧ x⩽ 5}

{ x - 1 ≥ 5 } x := x -1 { x ≥ 5 } Consq
{ x ≥ 5∧ x > 5 } x := x -1 { x ≥ 5 }

While
{ x ≥ 5 } while x > 5 do x := x - 1 od { x ≥ 5∧ x⩽ 5}
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Hoare logic – soundness and completeness

How can we be sure that we chose the right set of inference rules?

Once again, we can show that these rules are sound and complete with respect to our

operational semantics.

Soundness If we can prove {P} p {Q} then for all states σ such that P(σ), if 〈 p , σ 〉→ τ then Q(τ)

Completeness For all states σ and τ and programs p, such that 〈 p , σ 〉→ τ. Then for all

preconditions P and postconditions Q for which P(σ) ⇒ Q(τ), there exists a derivation showing

{P} p {Q}.

We can reason about all possible program behaviours using the rules of Hoare logic.

Put differently, we never need to execute code to prove its correctness.
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FromWhile to C#

We still need to consider a bucketload of missing features to turn our simple imperative language

into a more realistic programming language:

• Classes, objects, inheritance, abstract classes, virtual methods, …

• Strings, arrays, and other richer types

• Exceptions;

• Concurrency;

• Recursion;

• Shared memory;

• Standard libraries;

• Compiler primitives;

• Foreign function interfaces;

• …
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Program calculation

Problem

Given a precondition P and postcondition Q, find a program p such that {P} p {Q} holds.

There is a rich field of research on program calculation that tries to solve this problem.

Approaches include the refinement calculus, pioneered by people such as Edsger Dijkstra, Tony

Hoare, and many others.

60



Industrial strength program verification

Hoare logic (and its descendents) still form the basis of state-of-the-art verification tools:

• The Infer suite developed by Facebook;

• Automated theorem provers such as Dafny, Spec#, Key, and many others;

Computers are very, very good at computing and checking derivations in Hoare logic.

Instead of pages and pages of scribbles, this technology is catching bugs without ever having to

run a single line of code.
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Wrapping up

Please fill in the Caracal evaluation form!
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Material

• Lecture notes - Chapter 3;

• Check the wikipedia page on Hoare Logic for lots more examples and explanation.
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http://en.wikipedia.org/wiki/Hoare_logic

