
INFOB3CC: Concurrency
Exam 1

19 December 2019, 08:30 – 10:30

Please read the following instructions carefully:

• Write your name and student number here:

. .
• Be prepared to identify yourself with your ID card when you submit your exam.
• A maximum of 85 points can be obtained by answering the questions of this exam, to be divided by 8.5 to

obtain the final mark.
• Provide brief and concise answers. Overly verbose responses or nonsense added to otherwise good answers can

deduct from your grade.
• If a question does not give you all the details you need, you may make reasonable assumptions. Your assump-

tions must be clearly stated. If your solution only works under certain conditions, state them.
• Fill in your answers in the space provided. If you run out of space, continue in a separate answer booklet and

clearly indicate your name, student number, and the question number.
• You may use diagrams to help explain your answers.
• Read through the paper first and plan your time accordingly.
• Answer questions in English.
• Good luck! (:

Please do not write in the space below.

Question Points Score

Definitions 15

Locks 30

STM 25

Work & Span 15

Total: 85

This page is blank

Concurrency Exam 1, Page 1 of 11 19 December, 2019

Definitions
1. (a) (5 points) According to our definitions in the lecture, what is the difference between parallelism

and concurrency?

(b) (5 points) Give an example of a problem/computation which is parallel but not concurrent.

(c) (5 points) What does it mean for a program to be lock-free?

Concurrency Exam 1, Page 2 of 11 19 December, 2019

Locks

2. You have been asked to implement the ledger software for a bank, which will hold the account balance
for each of the clients. The software will support operations such as withdrawing, depositing, and
transferring money between accounts. It will use threads in order to process multiple transactions
concurrently. You intend to use locks in order to control the multiple threads in the program.
(a) (5 points) Consider the following implementation of a lock data type. This is a time-based lock for

at most 10 threads, where each thread has a unique identifier myId in the range [0..9] (inclusive).
Each thread gets a time slot in which it may acquire the lock.

1 data Lock = Lock (IORef Bool)
2

3 newLock :: IO Lock
4 newLock = do
5 r ← newIORef False −− True=locked, False=unlocked
6 return (Lock r)
7

8 lock :: Int → Lock → IO ()
9 lock myId l@(Lock ref) = do −− myId is in the range [0..9]

10 time ← getCurrentTime −− current program run time, in milliseconds
11 if time `mod` 10 == myId
12 then do −− this is my timeslot; try to acquire the lock
13 locked ← readIORef ref
14 if locked
15 then lock myId l −− retry
16 else writeIORef ref True −− take lock
17 else −− not my timeslot; retry
18 lock myId l
19

20 unlock :: Lock → IO ()
21 unlock (Lock ref) = atomicWriteIORef ref False

A correct lock implementation must fulfil the properties of mutual exclusion, deadlock freedom,
and starvation freedom. Explain why each of these requirements are or are not fulfilled by this lock
implementation.

Concurrency Exam 1, Page 3 of 11 19 December, 2019

(b) (5 points) Consider the following implementation of a lock data type. This is a ticket based lock;
when a thread wants the lock, it takes a ticket number, and then waits for that number, similar to
tickets in a pharmacy.

1 data Lock = Lock (IORef Int) (IORef Int)
2

3 init :: IO Lock
4 init = do
5 refTicket ← newIORef 0
6 refCounter ← newIORef 0
7 return (Lock refTicket refCounter)
8

9 lock :: Lock → IO ()
10 lock (Lock refTicket refCounter) = do
11 ticket ← atomicModifyIORef ' refTicket (λt → (t + 1, t))
12 let
13 wait = do
14 current ← readIORef refCounter
15 if current == ticket
16 then return () −− take lock
17 else wait −− not my turn; retry
18 wait
19

20 unlock :: Lock → IO ()
21 unlock (Lock _ refCounter) =
22 atomicModifyIORef ' refCounter (λc → (c + 1, ()))

Concurrency Exam 1, Page 4 of 11 19 December, 2019

A correct lock implementation must fulfil the properties of mutual exclusion, deadlock freedom,
and starvation freedom. Explain why each of these requirements are or are not fulfilled by this lock
implementation.

Concurrency Exam 1, Page 5 of 11 19 December, 2019

NOTE: In the remaining parts of this question, assume that you are using a lock implementation
which correctly fulfils the requirements for a lock as stated above.

(c) (5 points) The bank proposes that in order to safely execute transactions, a single global lock should
be placed around the entire account ledger. You think this will not be a good solution; explain why.

(d) (5 points) You propose instead to have a single lock on each individual account. You know you
must be careful with this arrangement, however, because it is possible to encounter a deadlock
when trying to access two accounts, even if you use a correct lock implementation. Give an example
execution/scenario of how this can occur.

Concurrency Exam 1, Page 6 of 11 19 December, 2019

(e) (5 points) How can you prevent these deadlocks, while still using only one lock per bank account.
You can not change the implementation of the lock itself, only how it is used.

(f) (5 points) How would you extend the answer of the previous section to handle a variable number of
bank accounts in a single transaction, in particular, when it is not known beforehand which accounts
will need to be accessed? For example, to withdraw money from a secondary account when there
are insufficient funds available in the first account.

Concurrency Exam 1, Page 7 of 11 19 December, 2019

STM

3. (a) (5 points) When writing code using STM, you cannot perform side effects in IO, such as reading
or writing files. Why is this restriction needed?

(b) (5 points) How does STM guarantee the property of mutual exclusion?

Concurrency Exam 1, Page 8 of 11 19 December, 2019

(c) (5 points) Does STM guarantee the absence of starvation? Explain why or why not.

(d) (5 points) In some situations STM transactions can be slow. Give an example where this can occur,
and explain why this happens.

Concurrency Exam 1, Page 9 of 11 19 December, 2019

(e) (5 points) Disgruntled with the limitations of software transactional memory, Felix makes his own
version which includes the possibility to read and write files on disk. Writing to files is directly
executed, and if the transaction fails, the operation is reverted by rewriting the original contents
of the file back. Will this approach work? If so motivate your answer, or if not explain why or
describe a problem which can be encountered.

Concurrency Exam 1, Page 10 of 11 19 December, 2019

Work & Span

4. Ada has developed a parallel algorithm with work Θ
(
n1.5

)
and span Θ

(
log3 n

)
. Gabriëlle thinks that

her own algorithm for the task is better, since the span is only Θ
(
log2 n

)
, although the work is Θ

(
n2

)
.

(a) (5 points) Which algorithm will perform (asymptotically) better with a linear Θ(n) number of
processors? Motivate your response.

(b) (5 points) Which algorithm will perform (asymptotically) better with a quadratic Θ
(
n2

)
number

of processors? Motivate your response.

Concurrency Exam 1, Page 11 of 11 19 December, 2019

(c) (5 points) For what number of processors is Ada’s algorithm (asymptotically) faster?

THERE ARE NO MORE QUESTIONS

Enjoy the holidays.

