[20241217] INFOB3CC - Concurrency -1 - USP

Course: BETA-INFOB3CC Concurrency (INFOB3CC)

Contents:

Pages:

Duration: 2 hours = A Front Pageccooceeeeeieieieieece e 1
Number of questions: 6 = B.QUESHIONS......uvvieieieeieeeeee e 8
= CoANSWET fOIM v 6

Generated on: Nov 5, 2025 « D. Elaboration of the anSwer...........cccococvvvveen.... 5

Front page - Page 1 of 1
66926-118039

[20241217] INFOB3CC - Concurrency -1 - USP

Course: Concurrency (INFOB3CC)

= The exam is a closed book exam.

= The exam must be made alone. No communication with others is allowed.

= Provide brief and concise answers. Overly verbose responses or nonsense added to
otherwise good answers can deduct from your grade.

= When asked to explain your choice on a multiple choice question, your reasoning
should explain why your chosen answer is correct and why the others are not correct.

= If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

* You may assume that threads do not crash.

= You have two hours to complete the exam. You can go back to previous questions.

= Good luck! (:

Number of questions: 6

You can score a total of 36 points for this exam, you need 21.6 points to pass the exam.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 1 of 8
66926-118039

1 Complete the program below to create an example which may end in a deadlock.
Non-deterministically, it should either execute properly, or result in a deadlock. Assume the program
has two threads, thread 1 and thread 2, and two locks, lockA and lockB.

Function acquire(lock) takes the given lock and release(lock) releases the given lock.
Thread 1
= acquire(lockA)

o

= (a) A.acquire(lockA) B. acquire(lockB) C. release(lockA) D. release(lockB) (0.3 pt.)

= (b) A. acquire(lockA) B. acquire(lockB) C. release(lockB) (0.25 pt.)

ve)

= (c¢) A. acquire(lockA) B. acquire(lockB) C. release(lockA) D. release(lockB) (0.3 pt.)
Thread 2

= (d) A.acquire(lockA) B. acquire(lockB) C. release(lockA) D. release(lockB) (0.3 pt.)
= (e) A.acquire(lockA) B. acquire(lockB) C. release(lockA) D. release(lockB) (0.3 pt.)
= (f) A.acquire(lockA) B. acquire(lockB) C. release(lockB) (0.25 pt.)

= (g) A.acquire(lockA) B. acquire(lockB) C. release(lockA) D. release(lockB) (0.3 pt.)

3pt. h. Which of the following approaches can be used to prevent deadlocks?

Deadlocks can be prevented by

a. using a fair scheduler.

b. replacing locks with MVars.

c. taking locks in a fixed order.

d. using STM for concurrent code.

e. using a lock based on compare-and-swap instead of Peterson's algorithm.

f. only taking a single lock at a time.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 2 of 8

2 When designing a concurrent data structure with locks, one must decide where locks are used in the

3pt. structure, and thus how many locks are used. For instance, for a concurrent table or matrix we may
choose to add a single lock to the entire table, to have locks per row or to use one lock per field of the
table. This choice influences several aspects of the program. In this question, we consider the
implications of this trade-off.

You may assume that threads don't crash in a critical section.

For each potential problem, select whether it is more likely to occur in a situation with few, or with
many locks.

If a problem is not related to the granularity of locks, select 'neither'. You may select multiple answers

per column.
Few Many Neither
locks locks
A B (o]
Lock contention 1

Less concurrency available 2

Bugs causing deadlocks 3

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 3 of 8

2 pt.

2 pt.

3 pt.

2 pt.

This question considers the design of a concurrent stack. First, we consider a stack implemented
using an IORef. The stack and the push operation (which adds a value to the stack) are given by:

type Stack a = IORef [a]

push :: Stack a -> a -> IO ()
push ref value = do
ticket <- readForCAS ref
let currentlist = peekTicket ticket
(success,) <- casIORef ref ticket (value : currentlList)
if success then return ()

else push ref value -- if the CAS failed, try again

Similar to push, we can also implement tryPop, which removes a value from the stack if the stack is
not empty (and returns Nothing if the stack is currently empty).

tryPop :: Stack a -> IO (Maybe a)
If no other threads are running, push and tryPop operate in constant time.
a. What happens when two threads call push at the same time?

b. The implementation of push uses (:) to add an item to a list. Since lists are linked lists, this
takes O(7) time.

Imagine that the stack uses arrays or vectors instead of lists. The operation (:) then takes O(n)
time, where n is the length of the array. What are the concurrency-related implications of this
change?

Besides push and tryPop, we also want to have a pop function. This function is similar to tryPop, but it
blocks if the stack is currently empty and waits until another threads pushes a value to the stack. The
function tryPop would have returned Nothing in that scenario.

It is not possible to implement this using the IORef-based lock, hence we switch to STM. The queue
and its operations now have the following types:

type Stack a = TVar [a]

push :: Stack a -> a -> STM ()

tryPop :: Stack a -> STM (Maybe a)

pop :: Stack a -> STM a -- the new operation

c. Implement a blocking version of pop :: Stack a -> STM a.

d. Explain how STM internally blocks and restarts your implementation of pop.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 4 of 8

6 pt.

Atomic fetch-and-add, atomic_fetch _add(var, increment), is an atomic instruction that atomically reads
a number at address var, adds increment to it, and writes it back to memory. Finally it returns the
value from before the change. It is the atomic equivalent of the following procedure:

int fetch add(int *var, int increment) {
int old = *var;
*var = old + increment;
return old;

}

Suppose we have a processor that supports both the atomic compare-and-swap instruction and the
atomic fetch-and-add instruction.

To also support processors that do not support the atomic fetch-and-add instruction, a colleague
suggests an alternative implementation in terms of atomic compare-and-swap. They have written the
following loop:

int x = *var;

while (true) {
Result cas = atomic_compare exchange(var, x, x + increment);
if (cas.success) return;
X = cas.original;

}

In this question, we compare this atomic compare-and-swap loop with the real atomic fetch-and-add
instruction.

Here are some statements about atomic fetch-and-add and the atomic compare-and-swap (CAS) loop
shown above. Which of them are true?

a. Atomic fetch-and-add is wait-free.

b. The CAS loop is wait-free.

c. Atomic fetch-and-add and the CAS loop have the same (strongest) progress guarantee.

d. The CAS loop is non-blocking.

e. The CAS loop does not behave as an atomic function as it consists of multiple instructions.
f. In terms of their effect on memory, these functions behave identically.

g. Atomic fetch-and-add and the CAS loop are both lock-free.

h. Whereas atomic fetch-and-add provides (‘fetches’) the old value, you cannot modify the CAS
loop to also provide the old value.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 5 of 8

5 In this question, we consider a system that uses three threads: A, B and C. Thread A is responsible
for the audio of the system, B for the video and C for the user interface. Since the user interface
influences which audio should be played, these threads should synchronise and communicate.

1 pt. a. Is it possible to execute this system on a single logical core?

a. No, with one logical core thread B can only start after thread A is finished, whereas they
should be executing at the same time.

b. Yes, via simultaneous multi-threading (SMT).
c. Yes, multiple threads take turns on this core.
1 pt. b. Is this scenario, with one logical core, an example of concurrency and/or parallelism?
Zero, one or two options are possible.
a. Concurrency

b. Parallelism

1 pt. c. Now assume we run these three threads on a processor with three logical cores. Is that an
example of concurrency and/or parallelism?

Zero, one or two options are possible.
a. Concurrency

b. Parallelism

To prevent hiccups in the music, the audio thread should run every 10 milliseconds for roughly 2
milliseconds to load the next sound data.

In the next questions, we consider which progress guarantees are desired for synchronisation
between the three threads.

2 pt. d. Explain why using a blocking algorithm for synchronisation between threads is not appropriate
in this scenario.

2 pt. e. Is lock-free sufficient in this case? Explain why this is sufficient, or explain why it is not
sufficient and what progress guarantee you would require.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 6 of 8

2 pt.

1 pt.

1 pt.

a.

What are possible uses of a single MVar?

a.

b.

C.

d.

A single MVar can be used as a one-slot communication channel.
A single MVar can be used as a lock-free counter.
A single MVar can be used as a lock.

A single MVar can be used as a fast concurrent queue.

The following questions regard the behavior of putMVar depending on the state of an MVar called

mvar.

b.

If mvar is currently empty and no threads are currently trying to read or take the value from the
MVar, what is the behavior of putMVar mvar 42?

a.

b.

It stores the value in the MVar and returns immediately.
It does not alter the MVar and returns immediately.

The current thread blocks until another thread reads the value from the mvar with
readMVar mvar.

The current thread blocks until another thread takes the value from the mvar with
takeMVar mvar.

The current thread blocks until another thread reads or takes the value from the mvar
with readMVar mvar or takeMVar mvar.

It throws an exception.

If mvar is currently full and no threads are currently trying to read or take the value from the
MVar, what is the behavior of putMVar mvar 42?

a.

b.

It stores the value in the MVar and returns immediately.
It does not alter the MVar and returns immediately.

The current thread blocks until another thread reads the value from the mvar with
readMVar mvar.

The current thread blocks until another thread takes the value from the mvar with
takeMVar mvar.

The current thread blocks until another thread reads or takes the value from the mvar
with readMVar mvar or takeMVar mvar.

It throws an exception.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 7 of 8

1 pt.

1 pt.

Assume two threads, thread 1 and 2, are currently trying to read the value from the MVar with
readMVar. The MVar is currently empty. Thread 1 called readMVar before thread 2.

What is the behavior of putMVar mvar 427

a.

b.

It unblocks both threads performing readMVar.

It unblocks thread 1.

It unblocks thread 2.

It unblocks one of the two threads. Which thread is unblocked is non-deterministic.

It throws an exception.

Assume two threads, thread 1 and 2, are currently trying to take the value from the MVar with
takeMVar. The MVar is currently empty. Thread 1 called takeMVar before thread 2.

What is the behavior of putMVar mvar 42?

a.

b.

It unblocks both threads performing takeMVar.

It unblocks thread 1.

It unblocks thread 2.

It unblocks one of the two threads. Which thread is unblocked is non-deterministic.

It throws an exception.

[20241217] INFOB3CC - Concurrency - 1 - USP Questions - Page 8 of 8

Signature:
Name: g

Date: / / Date of birth: / /

Course: BETA-INFOB3CC Concurrency (INFOB3CC) - Questions: [20241217] INFOB3CC - Concurrency - 1 - USP

= The exam is a closed book exam.

= The exam must be made alone. No communication with others is allowed.

= Provide brief and concise answers. Overly verbose responses or nonsense added to otherwise
good answers can deduct from your grade.

= When asked to explain your choice on a multiple choice question, your reasoning should
explain why your chosen answer is correct and why the others are not correct.

= If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works under
certain conditions, state them.

= You may assume that threads do not crash.

= You have two hours to complete the exam. You can go back to previous questions.

= Good luck! (:

w2 0000
» O 00
. 0000
« 0000
. 0000
000
« O 00O

A B o] D E F

h OO 0000
There are multiple answers possible
3 pt.

O O O

[20241217] INFOB3CC - Concurrency - 1 - USP Answer form - Page 1 of 6
66926-118039

2 O O O
O O O

Choose one option per row

[20241217] INFOB3CC - Concurrency - 1 - USP Answer form - Page 2 of 6
66926-118039

9 pt.

66926-118039

a.

Answer:

Answer:

[20241217] INFOB3CC - Concurrency - 1 - USP

Answer form - Page 3 of 6

C. Answer:

d. Answer:

.., 00000000

There are multiple answers possible

[20241217] INFOB3CC - Concurrency - 1 - USP Answer form - Page 4 of 6
66926-118039

S 2 00O

There are multiple answers possible

- 00

There are multiple answers possible

d. Answer:

e. Answer:

[20241217] INFOB3CC - Concurrency - 1 - USP Answer form - Page 5 of 6
66926-118039

. . 0000

There are multiple answers possible

A B c D E F
. O O O O O O
A B C D E F
. O OO O OO
A B c D E
a« O O O O O
A B c D E
e. O O O O O
[20241217] INFOB3CC - Concurrency - 1 - USP Answer form - Page 6 of 6

66926-118039

Elaboration of the answer

5 pt.

66926-118039

> O O » W O O @

1pt. C

1 pt. D

E

1 pt. F

Bonus: 0 pt.
1. 1pt
2. 1pt.
3. 1pt

[20241217] INFOB3CC - Concurrency - 1 - USP

Elaboration of the answer - Page 1 of 5

a Correction criterion Points
9 pt. :

CAS fails on one of the two threads Oto 1
points

That thread does another iteration of the loop, and then adds its value to the Oto1
stack points

Total points: 2 points

Correction criterion Points

The program does more redundant work: it does linear work, that is thrown away if Oto 2
the CAS fails points
OR

Time between read and CAS is longer, so the CAS has a higher chance of failure,
leading to redundant work.

Total points: 2 points

Correction criterion Points

list <- readTVar var 0 to 0.5 points
OR
m <- tryPop var

case list of [] -> (A) ; x:xs -> (do writeTVar var xs; (B)) |0 to 1 points
OR
case m of Nothing -> (A); Just x -> (B)

(A) retry 0 to 1 points

(B) return x 0 to 0.5 points

Total points: 3 points

Correction criterion Points

retry stops the transaction 0 to 0.6 points

STM builds a list of read variables 0 to 0.7 points

If any of those variables changes, this transaction is restarted |0 to 0.7 points

Total points: 2 points

[20241217] INFOB3CC - Concurrency - 1 - USP Elaboration of the answer - Page 2 of 5
66926-118039

4, 1pt. A

6 pt. B
C
1 pt. D
E
1 pt. F
1 pt. G
H
Bonus: 0 pt.

5. a. 1pt. C

7 pt.
b. 1pt. A
B
Bonus: 0 pt.
c. 1pt. A
ipt. B
Bonus: 0 pt.
d Correction criterion Points
The audio thread has a small time budget Oto1
points
It might not meet its deadline if it needs to wait on a lock, that another thread Oto 1
holds points
Total points: 2 points
o Correction criterion Points
No: lock-free guarantees system-wide progress, but it does not guarantee the Oto2
progress of a single thread. OR: It may have starvation. points
Or yes: lock-free does not guarantee the progress of a single thread, but the expected
waiting time is low
Total points: 2
points

[20241217] INFOB3CC - Concurrency - 1 - USP Elaboration of the answer - Page 3 of 5
66926-118039

6. a. 1pt. A

6 pt. B
1 pt. C
D
Bonus: 0 pt.
b. 1pt. A
c. 1pt. D
d. 1pt. A
e. 1pt B

[20241217] INFOB3CC - Concurrency - 1 - USP Elaboration of the answer - Page 4 of 5
66926-118039

Caesura

Applied guessing score: 7.193 pt

Points scored Grade 7 1.00
36 10 6 1.00
35 9.69 5 1.00
34 9.38 4 1.00
33 9.06 3 1.00
32 8.75 2 1.00
31 8.44 1 1.00
30 8.13 0 1.00
29 7.81
28 7.50
27 7.19
26 6.88
25 6.56
24 6.25
23 5.94
22 5.63
21 5.31
20 5.00
19 4.69
18 4.38
17 4.06
16 3.75
15 3.44
14 3.13
13 2.81
12 2.50
11 2.19
10 1.88
9 1.56
8 1.25

66926-118039

[20241217] INFOB3CC - Concurrency - 1 - USP

Elaboration of the answer - Page 5 of 5

	[20241217] INFOB3CC - Concurrency - 1 - USP
	Course: BETA-INFOB3CC Concurrency (INFOB3CC)
	Pages:
	Contents:

	[20241217] INFOB3CC - Concurrency - 1 - USP
	Course: Concurrency (INFOB3CC)
	Elaboration of the answer
	Caesura

