[20250415] INFOB3CC - Concurrency - 2(H) - USP

Course: BETA-INFOB3CC Concurrency (INFOB3CC)

Contents:

Pages:

Duration: 2 hours = A Front Pageccooceeeeeieieieieece e 1
Number of questions: 6 = B.QUESHIONS......uvvieieieeieeeeee e 8
= CoANSWET fOIM v 8

Generated on: Jun 25, 2025 « D. Elaboration of the anSwer...........cccococvvvveen.... 6

Front page - Page 1 of 1
68313-116294

[20250415] INFOB3CC - Concurrency - 2(H) - USP

Course: Concurrency (INFOB3CC)

= The exam is a closed book exam.

= The exam must be made alone. No communication with others is allowed.

= Provide brief and concise answers. Overly verbose responses or nonsense added to
otherwise good answers can deduct from your grade.

= When asked to explain your choice on a multiple choice question, your reasoning
should explain why your chosen answer is correct and why the others are not correct.

= If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

* You may assume that threads do not crash.

= You have two hours to complete the exam. You can go back to previous questions.

= Good luck! (:

Number of questions: 6

You can score a total of 39 points for this exam, you need 22.28 points to pass the exam.

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 1 of 8
68313-116294

1.5 pt.

2 pt.

1.5 pt.

3 pt.

Besides atomic compare-and-swap, many processors also feature an atomic fetch-or function. Given
a pointer (memory location or IORef) and a value, it atomically loads the current value in that location,
computes bitwise or of that value and the given value, writes that computed value to the location, and
returns the old value. It is thus an atomic version of the following function:

int fetch or(int *variable, int arg) {
int old value = *variable; // Read the old value
*variable = old value | arg; // Write the new value to the variable

return old value;

Alternatively, it is the atomic equivalent of the following Haskell code:

fetchOr :: IORef Int -> Int -> IO Int
fetchOr ref arg = do

0ld <- readIORef ref

writeIORef ref (old .|. arqg)

return old

Bitwise or computes the logical or per bit of a number. For example, Ob1100 | 0b1010 = 0b1110.
Recall that atomic compare-and-swap (afomic_compare_exchange, or caslORef in Haskell) has the

following signature:

struct Result { bool success; int original; }
Result atomic compare exchange (int *variable, int expected, int
replacement) ;

It is possible to implement a lock using atomic fetch-or (without atomic compare-and-swap). Similar to
the CAS lock, this only requires a single variable as shared state. We call this variable state.
In the following questions, you should give an implementation of this lock.
a. What value(s) of state should denote that the lock is taken, and which should denote that the
lock is free?
Choose the values such that the lock can be implemented using atomic fetch-or.

b. Implement a function to acquire the lock. You may give code either in C or in Haskell. Use
atomic_fetch_or to denote the atomic fetch-or operation.

c. Implement a function to release the lock. You may give code either in C or in Haskell.

d. While many processors support atomic_fetch_or natively, there exist some processors that do
not. Fortunately, atomic_fetch _or can be implemented as a function in terms of
atomic_compare_exchange.

Implement atomic_fetch_or in terms of atomic_compare_exchange (or cas/ORef).

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 2 of 8

2 In this function, we consider various functions in Haskell to change the value of a mutable variable.

First, consider the following function to change the value of an IORef:

changeIORef :: IORef Int -> IO ()
changeIORef ref = do
currentValue <- readIORef ref
let newValue = currentValue * 2 + 1
writeIORef ref newValue

Assume that the IORef is only accessed via changelOREef. It is accessed from multiple threads.
2 pt. a. Which properties hold for this implementation?
a. It performs the change atomically
b. Itis wait-free
c. It is deadlock-free

d. It is starvation-free

Now consider an implementation using MVars:

changeMVar :: MVar Int -> IO ()
changeMVar var = do
currentValue <- takeMVar var
let newValue = currentValue * 2 + 1
putMVar var newValue

Again, you may assume that the MVar is only accessed via this function and that it is filled at the
beginning of the program. It is accessed from multiple threads.

2 pt. b. Which properties hold for this implementation?
a. It performs the change atomically
b. Itis wait-free
c. ltis deadlock-free

d. It is starvation-free

Finally, consider an implementation using TVars:

changeTVar :: TVar Int -> IO ()
changeTVar var = atomically $ do
currentValue <- readTVar var
let newValue = currentValue * 2 + 1

writeTVar var newValue

You may again assume that the TVar is only accessed via this function, from multiple threads.

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 3 of 8

2 pt.

2 pt.

2 pt.

3 pt.

Which properties hold for this implementation?

a.

b.

It performs the change atomically
It is wait-free
It is deadlock-free

It is starvation-free

Give the thread hierarchy on a GPU, i.e. the relations between threads, thread blocks, grids
and warps on a GPU.

Why is it important to consider this thread hierarchy when implementing performant algorithms
(for instance a scan) on a GPU?

How do threads, SIMD and simultaneous multithreading on a CPU relate to the thread
hierarchy on a GPU?

[20250415] INFOB3CC - Concurrency - 2(H) - USP

Questions - Page 4 of 8

1 pt.

1 pt.

1 pt.

2 pt.

1 pt.

A scan can be executed sequentially with one (memory) read and one (memory) write per element, in
linear time.

a.

Can a three-phase parallel scan be implemented with only one read and one write per
element?

a. Yes

b. No

Is reduce-then-scan (a three-phase parallel scan) efficient?
a. Yes

b. No

Is reduce-then-scan (a three-phase parallel scan) optimal?
a. Yes

b. No

What property (or properties) for a givenoperator & of a scan is (or are) absolutely required to
evaluate it efficiently in parallel?

a Vry. xhy=ydx
b. Vexdr==z

c. Vry. z@y=(ry dy

d Viyz z®d(ydz)=(xdy) Dz

The input of a scanl, with operator +, can be reconstructed from its output. Which parallel
pattern should be used to convert the output of a scanl to its corresponding input?

a. map
b. fold

c. scanl

d. scanr

e. stencil

f. permute

g. backpermute

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 5 of 8

5 Consider the following algorithm, which performs a parallel map over the input array and three
recursive calls of arrays of half the size:

procedure erumpent (ps) {
n = length (ps)

if

if n ==

{ return 0 }

o]
Il
Il
= o

{ return ps[0] }

gs =map (\p -=> p * n + 1) ps

a = erumpent (slice(gs, 0, n * 0.5))

erumpent (slice(gs, n * 0.25, n * 0.75))
c = erumpent(slice(gs, n * 0.5, n * 1))

return a + b + ¢

The three recursive calls are executed in parallel.

The array length and slice (view the subarray between two indices, without copying) functions can be
executed in constant time.

2 pt. a. What is the asymptotic span of this algorithm? Show how you computed the span.

2 pt. b. What is the asymptotic work of this algorithm? Show how you computed the work.

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 6 of 8

6 In this question, we model the growth of a new fungus-type organism. This organism turns energy into
body mass efficiently and thus grows rapidly. This growth is modeled on a 2-dimensional grid and
simulated with small time steps. If some cell is occupied, then all 8 adjacent cells will also be occupied
in the next timestep. The organism also stays present in the current cells.

Time t=1 Time t=2 Time t=3
Oooodoo ooooooo EEEEEER
Oooooooo ml 1]]] |m L 111 1]]]
OOmOmcooO ml § 1]] |m EEEEEER
Oooomdoo ml 1]] |m EEEEEER
Oooooooo mim] | | |mim| L 111 1]]]
Oooodoo Ooooooo ml 1 1]] [m

The grid is stored as a two-dimensional array of booleans.

You are asked to choose the most performant option to implement several operations for this problem
using data parallel patterns / combinators.

1 pt. a. With which parallel pattern (or combinator) can a single time step be simulated?
a. map
b. stencil
c. fold
d. scan

e. permute

f. backpermute

g. zp
2 pt. b. After simulation a certain number of time steps, we need to know the number of populated
cells. This can be computed in two steps. Which parallel patterns should be used in those two
steps?
map stencil fold scan permute backpermute zip
A B c D E F G
Step
1
Step)
2

After some iterations, the shape of the organism will be convex. For this question, it is enough to think
of this as a rectangle with only some cells at the borders missing. The size of the organism in later
steps of the simulation can now be computed directly: each step will grow the rectangle by 1 on all
sides, with the same number of cells missing in each step. For instance, in this example you can see
that there always 6 cells missing from the rectangle:

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 7 of 8

2 pt.

3 pt.

Timet=1 Timet=2 Timet=3
L 1] 1 | [mjm|
| | | [mmi EEEEEN0
OO HEERO ENEEEEE
om0 EEEER ENEEEEE
oom ml 111} EEEEEEE
mim]] | | ml 111]]
OO0EEEE
c. We must now detect whether the shape is already convex. This can be done by counting for
each row and column, the number of transitions from empty to filled (and filled to empty) cells.
Given a boolean array corresponding to a single row of the grid, how can we compute the
number of transitions from empty to full?
stencil fold scan permute backpermute zip
A B c D E F
Step
1
Step)
2
d. Besides the boolean grid, we are now also given a matrix of temperatures. We want to perform

some analysis over the temperatures of the filled cells. Hence we need to convert the matrix of
temperatures to a vector (1-dimensional array) containing only the temperature values of filled
cells.

How can that vector be constructed?

map stencil fold scan permute backpermute zip
A B (o] D E F

Step

1

Step)

2

Step 3

3

[20250415] INFOB3CC - Concurrency - 2(H) - USP Questions - Page 8 of 8

Signature:
Name:

Date: / / Date of birth: / /

Course: BETA-INFOB3CC Concurrency (INFOB3CC) - Questions: [20250415] INFOB3CC - Concurrency - 2(H) - USP

= The exam is a closed book exam.

= The exam must be made alone. No communication with others is allowed.

= Provide brief and concise answers. Overly verbose responses or nonsense added to otherwise
good answers can deduct from your grade.

= When asked to explain your choice on a multiple choice question, your reasoning should
explain why your chosen answer is correct and why the others are not correct.

= If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works under
certain conditions, state them.

= You may assume that threads do not crash.

= You have two hours to complete the exam. You can go back to previous questions.

= Good luck! (:

[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 1 of 8
68313-116294

8 pt.

68313-116294

a.

Answer:

Answer:

Answer:

[20250415] INFOB3CC - Concurrency - 2(H) - USP

Answer form - Page 2 of 8

d. Answer:

20

22

[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 3 of 8
68313-116294

2 A B ¢} D

w2 00 0O
There are multiple answers possible

A B c D

. O O O O
There are multiple answers possible

A B c D

¢ U O 0O QO

There are multiple answers possible

[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 4 of 8
68313-116294

7 pt.

68313-116294

a.

Answer:

Answer:

Answer:

[20250415] INFOB3CC - Concurrency - 2(H) - USP

Answer form - Page 5 of 8

2 00
o O O
. O 0
«+ 0000

There are multiple answers possible

. 0000000

[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 6 of 8
68313-116294

4pt. a. Answer:

b. Answer:

.+ 0000000

[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 7 of 8
68313-116294

O »
O
O o
O O-
O m
O -
O o

c. A B c D E F
+ O O O O O O
20 O O O O O
Choose one option per row
d. A B c D E F G
O O O O O O O
20O O O O O O O
O O O O O O O
Choose one option per row
[20250415] INFOB3CC - Concurrency - 2(H) - USP Answer form - Page 8 of 8

68313-116294

Elaboration of the answer

8 pt.

Correction criterion

Points

1 = locked, 0 = unlocked

0 to 1.5 points

Total points:

1.5 points

Correction criterion

Points

while (

0 to 1 points

atomic_fetch_or(&state, 1) ==

){/* spin*/}

0 to 1 points

Total points:

2 points

Correction criterion | Points

state =0 0 to 1.5 points

Total points: 1.5 points

Correction criterion Points

current = *variable
OR
ticket <- readForCAS ref

0 to 1 points

atomic_compare_exchange(variable, current, current | new_value)
OR
caslORef ref ticket (peekTicket ticket .|. new)

0 to 1 points

Entire code is in a loop.

if (success) { return current; }

OR

if success then return (peekTicket ticket) else atomicSwap ref new
(or with a local function that loops, which takes a ticket as argument)

0 to 1 points

Total points: 3 points

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 1 of 6
68313-116294

2. a. A

6 pt. ipt. B
1 pt. C
ipt. D
Bonus: 0 pt

b. 1pt. A
B
1 pt. C
1 pt. D
Bonus: 0 pt.
c. 1pt. A
B
1 pt. C
D
Bonus: 0 pt.

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 2 of 6
68313-116294

3. Correction criterion Points
7pt. Q.
Grid is the entire execution of a kernel 0 to 0.5 points
Grid contains multiple thread blocks (that may execute independently) | 0 to 0.5 points
Thread blocks contain warps 0 to 0.5 points
Warps contain threads 0 to 0.5 points
Total points: 2 points
b Correction criterion Points
For communication: communication in a warp is cheapest, within a thread block Oto2
somewhat cheap (via shared memory), and within a grid is most expensive (via global | points
memory).
OR: For synchronization: threads in a warp are synchronized via lock step execution,
threads within a thread block can manually synchronize, threads within a grid typically
cannot synchronize.
Total points: 2
points
c Correction criterion Points
CPU thread ~ GPU warp Oto1
points
GPU warp executes SIMD instructions. OR: CPU SIMD lane ~ GPU thread Oto1
points
Simultaneous multithread on a CPU is similar to how a GPU switches between Oto 1
warps (when a warp has a latency) points
Total points: 3 points

4, a. 1pt B

6 pt.
b. 1pt. A
c. 1pt. A
d A
B
C
1 pt. D
Bonus: 0 pt.
e. 1pt E

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 3 of 6
68313-116294

5. Correction criterion Points

4pt. 4
f(n) = 1 (map is parallel) 0 to 0.5 points
T(n) =T(n/2) +1 0 to 0.5 points
Case 2 0 to 0.5 points
OR: f and recursive calls have similar contribution
Span is T(n) = O(log n) 0 to 0.5 points
Total points: 2 points

b Correction criterion Points

f(n)=n 0 to 0.5 points
T(n)=3T(n/2) +n 0 to 0.5 points
Case 1 0 to 0.5 points
OR: recursive calls dominate over f
Span is T(n) = O(n*(log_2(3)) ~ O(n*1.585) | 0 to 0.5 points
Total points: 2 points

6. a. 1pt B

8 pt.
b. 1. 1pt. A
2. 1pt C
C. 1. 1pt. A
2. 1pt B
d. 1. 1pt. A
2. 1pt D
3. 1pt E

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 4 of 6
68313-116294

Caesura

Applied guessing score: 5.567 pt

Points scored Grade 10 219
39 10 9 1.92
38 9.73 8 1.65
37 9.46 7 1.39
36 9.19 6 1.12
35 8.92 5 1.00
34 8.65 4 1.00
33 8.38 3 1.00
32 8.12 2 1.00
31 7.85 1 1.00
30 7.58 0 1.00
29 7.31
28 7.04
27 6.77
26 6.50
25 6.23
24 5.96
23 5.69
22 5.42
21 5.15
20 4.89
19 4.62
18 4.35
17 4.08
16 3.81
15 3.54
14 3.27
13 3.00
12 2.73
11 2.46

68313-116294

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 5 of 6

Question identifiers

These identifiers can be used to track the exact origin of the question. Use these identifiers together with the
identifier of this document when sending in comments about the questions, so that your comment can be
connected precisely with the question you are referring to.

Document identifier:

Question number

1

o a A~ W DN

68313-116294

Question identifier Version identifier

655659 7cbb1656-6a37-4acc-ab06-9db73b5b7087
627520 8e8089e6-6270-42ed-8494-e2545dd77005
656078 996ed5fe-c158-4621-a1ec-71fdfa95be06
521784 eba79ada-e0c9-46e7-9f47-e8929310c22f
520484 3f1bc78e-8f30-4697-9bcb-3b366e734a8f
656082 eb3bab6cf-0277-4f21-bb89-aeda107c7ae4

[20250415] INFOB3CC - Concurrency - 2(H) - USP Elaboration of the answer - Page 6 of 6

	[20250415] INFOB3CC - Concurrency - 2(H) - USP
	Course: BETA-INFOB3CC Concurrency (INFOB3CC)
	Pages:
	Contents:

	[20250415] INFOB3CC - Concurrency - 2(H) - USP
	Course: Concurrency (INFOB3CC)
	Elaboration of the answer
	Caesura
	Question identifiers

