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Motivation

• Concurrency: dealing with lots of things at once


- Collection of independently executing processes

- Two or more threads are making progress

• Parallelism: doing lots of things at once


- Simultaneous execution of (possibly related) computations

- Two or more threads are executing simultaneously
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Performance improvements over the years

6https://arstechnica.com/gadgets/2020/11/a-history-of-intel-vs-amd-desktop-performance-with-cpu-charts-galore/

Different scale

https://arstechnica.com/gadgets/2020/11/a-history-of-intel-vs-amd-desktop-performance-with-cpu-charts-galore/


The free lunch is over

• “The free lunch is over” (2005)


- Today virtually all processors include multiple cores/processing elements

- This has become the primary method for increasing performance

- This has consequences for the programmer

7http://www.gotw.ca/publications/concurrency-ddj.htm
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Why?
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Why?

• Moore's curve (1965)


- Observation that the number of transistors in an integrated circuit doubles roughly every two years

- Based on production cost and yield (success rate of production) of chips

- Not a law in any sense of the word (don't call it that)
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Why?

• Dennard scaling: As transistors get smaller, power density remains constant


- Voltage and current decrease at same rate as transistor size

• Smaller transistors allowed higher clock frequencies


- As signal delays are proportional to transistor size 
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Why?
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Why?

• Since ~2005 Dennard scaling breaks down


- Current leakage increased the power usage; power density wasn’t constant any more

- Consequence: can no longer improve performance through frequency scaling alone
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Why?
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Why?

• Traditional approaches to increasing CPU performance:


- Frequency scaling

- Caches

- Micro-architectural improvements

• Out of order execution (increase utilisation of execution hardware)

• Branch prediction (guess the outcome of control flow)

• Speculative execution (do work before knowing if it will be needed)
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Why?

• Frequency scaling: The Power Wall


- Power consumption of transistors does not 
decrease as fast as density increases

- Performance limited by power consumption (& 
dissipation)
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Why?

• Caches: The Memory Wall


- Memory speed does not increase as fast as 
computing speed

- Increasingly difficult to hide memory latency
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Why?

• Microarchitecture improvements: Instruction Level 
Parallelism Wall


- Law of diminishing returns

- Pollack rule: performance ∝ complexity
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Why?

18https://github.com/karlrupp/microprocessor-trend-data
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Performance walls

Limitations for single core performance:


• Power Wall


• Memory Wall


• ILP Wall


Instead, processors became faster by adding more cores
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Demo: Counting in parallel
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Counting in parallel

Say we need to count the number of persons in this room.


We can do that in parallel!


• Stand up, and remember the number 1


• Form pairs, if possible


• Add your two numbers, and now remember that number instead


• One per pair sits down


• Again form pairs of two standing persons, and repeat
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Concurrency bugs
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Therac-25

• Computer controlled medical radiation device (1982)


- Two operating modes: a low-current electron beam; or high-energy x-rays

• Involved in at least six incidents, resulting in serious injury or death


- A race condition could cause the high-power electron beam to be administered directly to the patient

- Resulted in radiation doses 100x higher than normal

- Additional problems related to poor software development practices

23https://en.wikipedia.org/wiki/Therac-25

https://en.wikipedia.org/wiki/Therac-25


Northeast blackout (2003)

• Widespread power outage throughout USA and Canada


- Second most widespread blackout in history (at the time)

- Affected an estimated 10M people in Ontario and 45M in 8 US states

- A race condition prevented an alarm from going off

- Operators were unaware of the need to redistribute power—a minor problem—which cascaded into complete 
collapse of the electrical grid

24https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003


Mars Pathfinder

• Launched by NASA in 1996


• Sojourner became the first rover to operate outside the Earth-Moon system


• Control computer contained a priority inversion bug


- Triggered under certain high loads causing a system reset

- Successfully patched remotely

25https://en.wikipedia.org/wiki/Mars_Pathfinder

https://en.wikipedia.org/wiki/Mars_Pathfinder


Conclusion?

26https://www.reddit.com/r/aww/comments/2oagj8/multithreaded_programming_theory_and_practice/

Theory Practice



Course formalities
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Topics

• Program a multithreaded application


- Managing threads

- Synchronise with locks, etc.

- Software transactional memory

- Parallelism

• Analyse parallel algorithms with work & span


• Design and implement concurrent algorithms / data structures
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Goals

• By the end of the course you should be able to:


- Design and implement a multithreaded application

- Understand the difference between concurrency and parallelism

- Reason about the properties/complexity of parallel algorithms
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Homepage

• https://ics-websites.science.uu.nl/docs/vakken/b3cc/


- Feel free to let me know if there are broken links, missing slides, etc.
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Teams

• There is an MS Teams Team again this year


- Join with code: k2st41o

31The IT Crowd



Sessions

• Lectures:


- Mon 17:15 - 19:00, or Mon 15:15 - 17:00, or Tue 13:15 - 15:00

- Thu 9:00 - 10:45

- Recorded (at your risk, please remind us if the recording light is off!)

• Working groups:


- Tue 15:15 - 17:00

- Thu 11:00 - 12:45

• Participation is expected (please ask questions!)


• Completing the working group sets is the best way to prepare for both the exams and the practicals
32



Course components

• Exam (50%)


- Mid session exam: 17-12-2024 (50%)

- Final exam: 28-01-2025 (50%)

• Practicals (50%)


- Assignment 1: 29-11-2024 (individual) (20%)

- Assignment 2: 20-12-2024 (in pairs) (40%)

- Assignment 3: 24-01-2025 (in pairs) (40%)

- If you want to reuse practical grades from last year, send me an email (i.g.dewolff@uu.nl)
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Haskell

• General concepts for concurrency are similar across programming languages,


• but some provide better support for concurrency.


• Haskell:


- Separates pure and impure code, e.g. thread-local work and actual concurrency work

- Has good support for building and studying abstractions

34



Haskell

• Haskell allows us to study both low-level and high-level aspects of concurrency.


- P1: basics of forking threads, locks and communication

- P3: design and implementation of a quicksort-like algorithm for GPUs 

• Tomorrow (15:15): Haskell recap, focusing on the important parts for this course


- Very boring if you just passed Functional Programming

- Who is interested?

• Sometimes we use C in examples in the slides, to focus on low-level details
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Resources

• Parallel and Concurrent Programming in Haskell


- https://simonmar.github.io/pages/pcph.html

• Many more on the website


- https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources.html

36
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Practicals

• P1: already available, you can start with a sequential (single-threaded) implementation


-  https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html 

37
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Software installation

• A recent version of GHC (9.4.8)


- Instructions on our website
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Next time…

Tuesday 15:15


• Haskell recap (BBG 161)


• Or: Working groups: start with P1 (BBG 001, 083, 061)


Thursday


• 9:00: Lecture: Threads


• 11:00: Working group: Exercises or P1
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Save the date: 

On November 14th we protest. 
The current Dutch government is planning: 
■ Caps on the influx of international talent 
■ Fines for taking longer to complete a degree  
■ Destructive cuts in academic research funding 

Take action to save Dutch higher  
education and research! 

1. Join the protest on November 14th 
13:00-15:00 @ Moreelsepark, Utrecht

2. Sign the petition against the budget cuts

3. Help mobilize fellow students & colleagues! 
linktr.ee/WOinActie
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