
B3CC: Concurrency
02: Haskell refresh

Ivo Gabe de Wolff

B3CC: Concurrency
02: Haskell refresh crash course

Ivo Gabe de Wolff

Warming up

3

Overview

• Haskell is a…

- Purely functional (side effects are strictly controlled) …

- Statically typed (every term has a type, inferred & checked by the compiler) …

- Polymorphic (functions and data constructors can abstract over types) …

- Non-strict/lazy (only compute what is needed) …

• … programming language

4

Haskell programming

• Code lives in a file with a .hs extension

• Can be compiled or interpreted in a REPL

- On the command line ghci

- In a cabal project (like the practicals) cabal repl

- Load a file from within GHCi :load Main.hs

• REPL includes a debugger and other useful functions (see also :help)

- Get information on a given name :info <name>

- … or its documentation :doc <name>

- … or the type of an expression :type <expression>
5

Simple expressions

• You can type most expressions directly into GHCi and get an answer

6

Prelude> 1024 * 768
786432

Prelude> let x = 3.0
Prelude> let y = 4.0
Prelude> sqrt (x^2 + y^2)
5.0

Prelude> (True && False) || False
False

Strings

• Strings are in “double quotes”

- They can be concatenated with ++

7

Prelude> “henlo”
“henlo”

Prelude> “henlo” ++ “, infob3cc”
“henlo, infob3cc”

Functions

• Calling a function is done by putting the arguments directly after its name

- No parentheses are necessary as part of the function call

8

Prelude> fromIntegral 6
6.0
Prelude> truncate 6.59
6
Prelude> round 6.59
7
Prelude> sqrt 2
1.4142135623730951
Prelude> not (5 < 3)
True
Prelude> gcd 21 14
7

Lists

• Built-in, perhaps the most common datatype

- Elements must all be the same type

- Comma separated and surrounded by square brackets []

- The empty list is simply []

9

Prelude> [2, 9, 9, 7, 9]
[2,9,9,7,9]

Prelude> [“list”, “of”, “strings”]
[“list”, “of”, “strings”]

Lists

• Can be defined by enumeration

- Start at zero, end at ten

- Start at one, increment by 0.25, end at 3

10

Prelude> [0..10]
[0,1,2,3,4,5,6,7,8,9,10]

Prelude> [1, 1.25 .. 3.0]
[1.0,1.25,1.5,1.75,2.0,2.25,2.5,2.75,3.0]

Lists

• Lists can be constructed & destructed one element at a time using : and []

• Strings are just lists of characters, so : and ++ also work on them

11

Prelude> 0 : [1..10]
[0,1,2,3,4,5,6,7,8,9,10]

Prelude> “woohoo” == ‘w’:’o’:’o’:’h’:’o’:’o’:[]
True

Prelude> [1,2] ++ [3..5]
[1,2,3,4,5]

List comprehensions

• Syntactic sugar for constructing lists

• There can be multiple generators, separated by commas

- Each successive generator refines the results of the previous

12

Prelude> import Data.Char
Prelude> let s = “haskell”
Prelude> [toUpper c | c <- s]
“HASKELL”

Prelude> [(i,j) | i <- [1..3], j <- [1..i]]
[(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)]

List comprehensions

• The latter can also be written using a guard

13

Prelude> [(i,j) | i <- [1..3], j <- [1..i]]
[(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)]

Prelude> [(i,j) | i <- [1..3], j <- [1..3], j <= i]
[(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)]

List comprehensions

• Boolean guards can be applied to filter elements

14

Prelude> [n | n <- [0..10], even n]
[0,2,4,6,8,10]

Types

• Everything in Haskell has a type

- So far we haven’t mentioned any, but they were always there!

• What is a type?

- A set of values with common properties and operations on them

• Integer

• Double

• [Char]

• (Char, Bool)

• …

15

Functions

• Functions describe how to produce an output from their inputs

- The type signature says that leftPad accepts two arguments as input and produces a string as output

- :: can be read as “has type”

• Functions only depend on their arguments

- The type signature is a strong promise

16https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code

leftPad :: Int -> String -> String
leftPad n rest = replicate n ‘ ’ ++ rest

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code

Functions

• Functions describe how to produce an output from their inputs

- Pattern matching is used to decompose datatypes

17

length :: [a] -> Int
length xs =
 case xs of
 [] -> 0
 (y:ys) -> 1 + length ys

Functions

• Functions can have multiple patterns

- Patterns are matched in order, top-to-bottom

- Only the first match is evaluated

- Each pattern has the same type

18

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

Functions

• Don’t implement redundant cases: 
 
 
 
 
 

• Since [x] = x : [], it is already handled correctly by the other two cases

19

length :: [a] -> Int
length [] = 0
length [x] = 1
length (_:xs) = 1 + length xs

redundant case

Order of patterns

• The first pattern that matches is executed

20

fibonacci :: Int -> Int
fibonacci n = fibonacci (n-1) + fibonacci (n-2)
fibonacci 0 = 1
fibonacci 1 = 1

fibonacci :: Int -> Int
fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n = fibonacci (n-1) + fibonacci (n-2)

ok

infinite loop

Functions

• There are many useful higher-order functions available on lists

- These take functions as arguments

- Some examples:

21

map :: (a -> b) -> [a] -> [b]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

foldl :: (b -> a -> b) -> b -> [a] -> b

scanl :: (b -> a -> b) -> b -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]

Type classes

• A set of types which share a number of operations

- Lets you generalise functions

- Similar to interfaces in C# or traits in Rust

• not to be confused with classes in OO languages

- If a is a member of type class Eq, then == can compare two values of this type for equality

22

(==) :: Eq a => a -> a -> Bool

Local definitions

• Local bindings can be declared in let or where clauses

- Once defined, these bindings can not change (immutable!)

- Order does not matter

23

slope (x1,y1) (x2,y2) =
 let dy = y2-y1
 dx = x2-x1
 in dy/dx

slope (x1,y1) (x2,y2) = dy/dx
 where
 dy = y2-y1
 dx = x2-x1

Syntactic peculiarities

• Case matters:

- Types, data constructors, and typeclass names, start with an uppercase letter

- Everything else (variables, function names…) start with a lowercase letter

• Indentation matters:

- Code which is part of some expression should be indented further in than the beginning of that expression

- Don’t use tabs (ever)

24

average x y = xy / 2
 where
 xy = x + y

average x y = xy / 2
 where
xy = x + y

ok syntax error

Example: BSN

• How many BSNs are there?

- A valid BSN must pass the 11-test

- For a 9-digit number ABCDEFGHI then:

9A + 8B + 7C + 6D + 5E + 4F + 3G + 2H + (-1)I

- … must be a multiple of eleven

25

Data types

26

Types

• Basic types

- Int, Float, Double, Char …

• Composite types

- Tuples: (Int, Float), (Char, Bool, Int, Int)

- Lists: [Int], [Float], [(Int, Float)]

• We can create new names (aliases) for existing types

27

type String = [Char]

Algebraic datatypes

• You can define your own datatypes

- For well-structured code

- For better readability

- For increased type safety

• Enumeration types

- Defines a type Bool and two new type constructors False and True

28

data Bool = False | True
 deriving (Show, Read, Eq, Ord)

Algebraic datatypes

• Datatypes can have type parameters

- Write a function to point-wise add two vectors

29

data Vec2 a = Vec2 a a
 deriving (Eq, Show)

Algebraic datatypes

• Data constructors can also have arguments

- Write the function area :: Shape -> Double

30

data Shape
 = Square Double
 | Rectangle Double Double	 	 — length, width
 | Circle Double		 	 	 	 	 — radius
 deriving (Eq)

Algebraic datatypes

• Datatypes can be recursive

- Write a function sumTree that sums all of the values stored in the tree

- Write a function toList :: Tree a -> [a]

31

data Tree a
 = Node (Tree a) (Tree a)
 | Leaf a

Monads

32

Monads

33http://tiny.cc/b3d8fz
http://blog.plover.com/prog/burritos.html

A monad in X is just a monoid in the category
of endofunctors of X, with product × replaced

by composition of endofunctors and unit set
by the identity endofunctor.

— Mac Lane

Monads are like burritos
— Mark Dominus

http://tiny.cc/b3d8fz
http://blog.plover.com/prog/burritos.html

Monads

34

Warm fuzzy thing
— Simon Peyton Jones

Monads

• Remember, Haskell is pure

- Functions can’t have side effects

- Functions take in inputs and produce outputs

- Nothing happens in-between (no modification of global variables)

• However, input/output is not at all pure

35https://clips.twitch.tv/TawdryProductiveLobsterMingLee-FsU2cH2bDUeSkKwk

https://clips.twitch.tv/TawdryProductiveLobsterMingLee-FsU2cH2bDUeSkKwk

Input/Output

• The IO monad serves as a glue to bind together the actions of the program

- Every IO action returns a value

- The type is “tagged” with IO to distinguish actions from other values

36

getChar :: IO Char

putChar :: Char -> IO ()

Input/Output

• The keyword do introduces a sequence of statements, executed in order

- An action (such as putChar)

- A pattern binding the result of an action with <- (such as getChar)

- A set of local definitions introduced using let

• main is the entry point of the program and must have type IO ()

37

main :: IO ()
main = do
 c1 <- getChar
 let c2 = chr (ord c1 + 1)
 putChar c2

Input/Output

• We can invoke actions and examine their results using do-notation

- We use return :: a -> IO a to turn the ordinary value into an action

- return is the opposite of <-

38

ready :: IO Bool
ready = do
 c <- getChar
 return (c == ‘y’)

Input/Output

• Each do introduces a single chain of statements. Any intervening construct must introduce a new do to
initiate further sequences of actions

39

getLine :: IO String
getLine =

Input/Output

• return admits values into the realm of ordinary IO actions; can we go the other way?

- No!

- Consider the function:

- It can not possibly do any IO, because that does not appear in the return type

• Safe to execute concurrently!

40

f :: Int -> Int -> Int

Programming with actions

• IO actions are ordinary Haskell values

- They can be passed to functions, stored in structures, etc…

- This list does not invoke any actions, it simply holds them

41

todoList :: [IO ()]
todoList =
 [putStr “henlo, ”
 , do
 l <- getLine
 putStrLn l
]

sequence_ :: [IO ()] -> IO ()
sequence_ = ...

Programming with actions

• Side effects are isolated into IO actions

• Pure code is separated from impure operations

• IO actions exist only within other IO actions

42

Photo by Justin Veenema

tot ziens

https://unsplash.com/@justinveenema?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

