
B3CC: Concurrency
03: Threads (1)

Tom Smeding

What is concurrency?

• Consider multiple tasks being executed by the computer…

- Tasks are concurrent with respect to each other if:

• They may be executed out-of-order

• Implies they can be executed at the same time, but this is not required

- Concurrency: deal with lots of things at once

2

What is parallelism?

• Consider multiple tasks being executed by the computer…

- Tasks are parallel if they are executed simultaneously:

• Requires multiple processing elements

• The primary motivation for parallel programming is to reduce the overall running time (wall clock) of the
program: parallel execution

- Parallelism: do lots of things at once

3

Question

• What does it mean for an application to be concurrent but not parallel?

- Give an example

• What does it mean for an application to be parallel but not concurrent?

- Give an example

4

Concurrency vs. Parallelism

• Concurrency: composition of independently executing processes

• Parallelism: simultaneous execution of (possibly related) computations

5

Concurrency

• Programming with multiple threads of control

- A tool for structuring programs with multiple interactions

- Examples: GUI, web server, different tasks in a game engine loop, …

• There is no single right answer

• In this course we will discuss several approaches: it is up to you to pick which is right for your application

6

Not easy!

More concurrency

• Concurrency appears on many levels:

- Threads within a process that share an address space (multithreading)

- Processes on a single system (multiprogramming / multiprocessing)

- Tasks on multiple systems connected by a network (distributed processing)

7

Hierarchy / "threads", "threads" and "threads"

8

× 2 +

8

× 1 +

× 2

24

Hierarchy / "threads", "threads" and "threads"

• Physical CPU cores

• Logical CPU cores (simultaneous multithreading / (Intel) hyper-threading) ("threads")

• Kernel threads

• Processes

• User space threads / green threads / goroutines / … (lightweight)

9

→ (scheduling: preemptive)

→ (scheduling: either preemptive or 
 cooperative)

→ "context switching"

Processes & Threads

• A (kernel) thread is…

- An execution context

- Contains all the information a CPU needs to execute a (logically sequential) stream of instructions

• i.e. register set, stack, program counter (a.k.a. instruction pointer), (potentially) thread-local storage

• A process is…

- A running instance of a computer program

- Consists of at least one (kernel) thread

- Separate memory space from other processes on the system

• Threads within a process share resources, but execute independently
10

Processes & Threads: Programming Languages

• Many programming languages support threading in some capacity

- Haskell: M:N hybrid threading model mapping M user space threads (forkIO) onto N kernel threads (via +RTS
-N<n>) → user space threads

- C/C++ provide access to the native threading APIs of the OS; POSIX threads (pthread_create) on *nix, and
process.h (_beginthread) on Windows. Various extensions can be built on top of these (OpenMP, TBB, …)

- Some interpreted languages (Ruby, Python) support threading for concurrency, but not parallel execution (GIL)

- Some languages for parallel computing (CUDA, OpenCL) have "threads" in some sense, but in an entirely
different way… more on that later!

11

https://hackage.haskell.org/package/base-4.17.0.0/docs/Control-Concurrent.html#v:forkIO
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/using-concurrent.html#parallel-options
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/using-concurrent.html#parallel-options
https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex?view=msvc-170

Threads: needs and difficulties

• Concurrent processes (threads) need special support

- Communication among processes

- Allocation of processor time

- Sharing of resources

- Synchronisation of multiple processes

• Concurrency can be dangerous to the unwary programmer:

- Sharing global resources (order of read & write operations)

- Management of allocation of resources (danger of deadlock)

- Programming errors are difficult to locate (Heisenbugs)

12

→ race conditions!

Example: access to a global queue

• Inserting:

13

head last

Example: access to a global queue

• Inserting:

- Create new object

14

head last

Example: access to a global queue

• Inserting:

- Create new object

- Set last->next to &new

15

head last

Example: access to a global queue

• Inserting:

- Create new object

- Set last->next to &new

- Set last to &new

16

head last

Example: concurrent access to a global queue

• Thread A:
 • Thread B:

17

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object

• Thread B:

18

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object
- Set last->next to &new

• Thread B:

19

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object
- Set last->next to &new

• Thread B:

- Create new object

20

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object
- Set last->next to &new

• Thread B:

- Create new object
- Set last->next to &new

21

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object
- Set last->next to &new

• Thread B:

- Create new object
- Set last->next to &new
- Set last to &new

22

head last

Example: concurrent access to a global queue

• Thread A:

- Create new object
- Set last->next to &new

- Set last to &new

• Thread B:

- Create new object
- Set last->next to &new
- Set last to &new

23

head last

Example: concurrent access to a global queue

• Lessons learned

- We have to control access to shared resources (such as shared variables)

- We can do this by controlling access to the code utilising those shared resources: critical sections

24

head last

Example: concurrent access to a global queue

• Only one thread at a time should have access to the queue:

- Thread A creates a new object, sets last->next pointer

- Thread A is suspended

- Thread B is scheduled: since Thread A is currently in insert, has to wait

- Thread A is resumed, the data structure is in the same state as it was when it was suspended

- Thread A completes operation

- Thread B is allowed to execute insert

25

Concurrency control

• Processes/threads can

- Compete for resources

• Processes may not be aware of each other

• Execution must not be affected by each other

• OS is responsible for controlling access

- Cooperate by sharing a common resource

• Programmer responsible for controlling access

• Hardware / OS / programming language may provide support

• Threads of a process usually do not compete, but cooperate
26

Concurrency control

• We face three control problems:

- Mutual exclusion: critical resources => critical sections

• Only one thread at a time is allowed in a critical section

• e.g. only one thread at a time is allowed to send commands to the GPU

- Deadlock: everyone is waiting on everyone else

- Starvation: e.g. when one thread always gets left out :/

27

Mutual Exclusion

28

Recall: Example: concurrent access to a global queue

• Only one thread at a time should have access to the queue:

- Thread A creates a new object, sets last->next pointer

- Thread A is suspended

- Thread B is scheduled: since Thread A is currently in insert, has to wait

- Thread A is resumed, the data structure is in the same state as it was when it was suspended

- Thread A completes operation

- Thread B is allowed to execute insert

29

Mutual exclusion

• Mutual exclusion (locking) protects shared resources

- Only one thread at a time is allowed to access the critical resource

- Modifications to the resource appear to happen atomically

30

mutex.lock();

... code ...

mutex.unlock();

Mutual exclusion

• Who is responsible?

- Software approach: put responsibility on the processes themselves

- Systems approach: provide support within the OS or programming language

• Hardware typically provides special-purpose machine instructions

• NOTE: Use the locking structures that come with your programming language!

31

… but let’s try doing it ourselves anyway

Software approach to mutual exclusion

• Premise

- 2 threads with shared memory (no assumptions about relative thread speed)

- Elementary mutual exclusion at the level of memory access

• Simultaneous accesses to the same memory location are serialised

• Requirements for the mutex:

- Only one thread at a time is allowed in the critical section for a resource

- No deadlock or starvation on attempting to enter/leave the critical section

- A thread must not be delayed access to a critical section when there is no other thread using it

- A thread that halts in its non-critical section must do so without interfering with other threads

32

Mutual exclusion

• Usage conditions:

- A thread remains inside its critical section for a short time only

• No potentially blocking operations should be executed inside the critical section

33

Attempt #1

• The plan:

- Threads take turns executing the critical section

- Exploit serialisation of memory access to implement serialisation of access to the critical section

• Employ a shared variable (memory location) turn that indicates whose turn it is to enter the critical section

34

• Thread B:• Thread A:

while (turn != 0)
 /* do nothing */ ;

<critical section>

turn = 1;

while (turn != 1)
 /* do nothing */ ;

<critical section>

turn = 0;

Attempt #1

• Busy waiting (spin lock)

- Process is always checking to see if it can enter the critical section

- Implements mutual exclusion

- Simple

• Disadvantages

- Process burns resources while waiting

- Processes must alternate access to the critical section

- If one process fails anywhere in the program, the other is permanently blocked

35

Attempt #2

• The problem:

- turn stores who can enter the critical section, rather than whether anybody may enter the critical section

• The new plan:

- Store for each process whether it is in the critical section right now

- flag[i] if process i is in the critical section

36

• Thread B:• Thread A:
while (flag[1])
 /* do nothing */ ;

flag[0] = true;
<critical section>
flag[0] = false;

while (flag[0])
 /* do nothing */ ;

flag[1] = true;
<critical section>
flag[1] = false;

Attempt #2

• Does not guarantee exclusive access

• Race condition: time-of-check to time-of-use (TOCTOU)

• What if a process fails? 

37

- Outside the critical section: the other is not blocked ✔

- Inside the critical section: the other is blocked :/ (however, difficult to avoid)

Attempt #3

• The goal:

- Remove the gap between toggling the two flags

• The new updated plan:

- Move setting the flag to before checking whether we can enter

38

• Thread B:• Thread A:
flag[0] = true;

while (flag[1])
 /* do nothing */ ;

<critical section>
flag[0] = false;

flag[1] = true;

while (flag[0])
 /* do nothing */ ;

<critical section>
flag[1] = false;

Attempt #3

• Is it working now?

- No. The gap can cause a deadlock now >_>

- Deadlock: when each member of a group of threads is waiting for another to take action (e.g. waiting for another to
release a lock)

39

Attempt #4

• Previous problem:

- Thread sets its own state before knowing the other threads’ states, and cannot back off

• The new updated revised plan:

- Thread retracts its decision if it cannot enter

40

• Thread B:• Thread A:
flag[0] = true;
while (flag[1]) {
 flag[0] = false;
 delay();
 flag[0] = true;
}
<critical section>
flag[0] = false;

flag[1] = true;
while (flag[0]) {
 flag[1] = false;
 delay();
 flag[1] = true;
}
<critical section>
flag[1] = false;

Attempt #4

• Is it working now?

- Close, but we may have a livelock =_=

- Livelock: The states of the group of threads are constantly changing with regard to each other, but none are progressing
(e.g. trying to obtaining a lock, but backing off if it fails)

- A special case of resource starvation, and a risk for algorithms which attempt to detect and recover from
deadlock

41

Attempt #5

• Improvements

- We can solve this problem by combining the first and third attempts

- In addition to the flags we use a variable indicating whose turn it is to have precedence in entering the
critical section

42

Attempt #5: Peterson’s algorithm

• Both threads are courteous and solve a tie in favour of the other

• Algorithm can be generalised to work with n threads

43https://en.wikipedia.org/wiki/Peterson%27s_algorithm

• Thread B:• Thread A:
flag[0] = true;
turn = 1;

while (flag[1]
 && turn == 1)
 /* do nothing */ ;

<critical section>

flag[0] = false;

flag[1] = true;
turn = 0;

while (flag[0]
 && turn == 0)
 /* do nothing */ ;

<critical section>

flag[1] = false;

https://en.wikipedia.org/wiki/Peterson%27s_algorithm

Attempt #5: Peterson’s algorithm

• Statement: mutual exclusion 
Threads 0 and 1 are never in the critical section at the same time

• Proof:

- If P0 is in the critical section then

• flag[0] is true

• flag[1] is false OR turn is zero OR P1 is trying to enter the critical section, after setting flag[1] to
true but before setting turn to zero

- For both P0 and P1 to be in the critical section

• flag[0] AND flag[1] AND turn=0 AND turn=1

44

Locking: real life

• Again: Peterson’s algorithm is a theoretical exercise

• Please use the facilities in your programming language

• If you are implementing a mutex yourself (or are doing the first practical, IBAN!), use the compare-and-swap
operation (casIORef)! (explained on Monday)

45https://hackage.haskell.org/package/atomic-primops-0.8.8/docs/Data-Atomics.html#v:casIORef

https://hackage.haskell.org/package/atomic-primops-0.8.8/docs/Data-Atomics.html#v:casIORef
https://hackage.haskell.org/package/atomic-primops-0.8.8/docs/Data-Atomics.html#v:casIORef

For the practical

46

IORefs

• In most languages variables are mutable by default

• In Haskell, mutable variables must be handled explicitly

- Notice that whether a variable is mutable is now reflected in its type!

• More information on Monday

• Check the documentation!

- https://hackage.haskell.org/package/base-4.17.2.1/docs/Data-IORef.html
- https://hackage.haskell.org/package/atomic-primops-0.8.8/docs/Data-Atomics.html

47

import Data.IORef

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

https://hackage.haskell.org/package/base-4.17.2.1/docs/Data-IORef.html
https://hackage.haskell.org/package/atomic-primops-0.8.8/docs/Data-Atomics.html

Extra slides

48http://ithare.com/wp-content/uploads/part101_infographics_v08.png

http://ithare.com/wp-content/uploads/part101_infographics_v08.png

