
B3CC: Concurrency
04: Threads (2)

Tom Smeding

Last time…

• Processes, threads, threads and threads

• Mutual exclusion

- Controlling access to shared resources

- Only one process/thread is allowed in the critical section at once

2

Blocking algorithms

3

Locks

• A lock or mutex is a mechanism that enforces limits on access to a resource (mutual exclusion)

- Conceptually simple!

• Programming languages with support for threads have some form of lock or barrier:

- Haskell: locking and thread coordination via a mutable data structure called MVar (more later…)

- C/C++: the std::mutex<T> class, the POSIX threads library, etc.

- C#: the lock keyword, etc.

- Rust: the Mutex<T> struct

- etc…

4

Locks: historically

5

• No real hardware support

• e.g. Peterson’s algorithm!

• Nowadays: nice hardware instructions!

• Thread B:

• Thread A:
flag[0] = true; turn = 1;
while (flag[1] && turn == 1) /* do nothing */ ;
<critical section>
flag[0] = false;

flag[1] = true; turn = 0;
while (flag[0] && turn == 0) /* do nothing */ ;
<critical section>
flag[1] = false;

Implementing locks

• The compare-and-swap (CAS) ("atomic compare-exchange") operation is an atomic instruction which allows
mutual exclusion for any number of threads using a single bit of memory.

• In hardware, atomically (as a single operation):

1. Compares the contents at a given memory location to the given value

2. If they are the same, writes a new value to that location

3. Returns:
- whether the new value was written
- the old value at the memory location

6https://www.felixcloutier.com/x86/cmpxchg

struct Result {
 bool success;
 int original;
}
Result atomic_compare_exchange(int *variable, int expected, int replacement);

https://www.felixcloutier.com/x86/cmpxchg

Implementing locks

• The spin lock:

- Use a bit (here 'lock') where 0 represents unlocked and 1 represents locked

• In Haskell: can use compare-and-swap via casIORef (from atomic-primops) 

7

while (atomic_compare_exchange(&lock, 0, 1).original == 1)
 /* do nothing */ ;

<critical section>

lock = 0;

struct Result {
 bool success;
 int original;
}
Result atomic_compare_exchange(int *variable, int expected, int replacement);

The traditional mutex API

• mutex.acquireLock()

• mutex.releaseLock()

8

while (atomic_compare_exchange(&lock, 0, 1).original == 1)
 /* do nothing */ ;

<critical section>

lock = 0;

• C/C++: pthread_mutex_*, std::mutex<T>; C#: lock; Rust: Mutex<T>; …

Example: bank accounts

• Model bank accounts and operations like withdrawing, depositing, and transferring money between accounts

- It should not be possible to observe a state where, during a transfer, money has been withdrawn from one
account but yet to be deposited into the target account

9

Account 1
$500

Account 2
$300

Account 3
$200

Thread A
$150

Thread B
$200

Attempt #1

• The basic idea:

10

struct Account {
 int balance;
};

void deposit(int amount, Account *acc) {
 int previous = acc->balance;
 acc->balance = previous + amount;
}

void withdraw(int amount, Account *acc) {
 deposit(-amount, acc);
}

void transfer(int amount, Account *from, Account *to) {
 withdraw(amount, from);
 deposit (amount, to);
}

Example: bank accounts

• Example: bank accounts

11

Account 1
$500

Account 2
$300

Account 3
$200

Thread A
$150

Thread B
$200

• Thread A:
 • Thread B:

Example: bank accounts

• Example: bank accounts

12

Account 1
$500

Account 2
$300

Account 3
$200

Thread A
$150

Thread B
$200

• Thread A:

- Read balance of account 2: $300

• Thread B:

Example: bank accounts

• Example: bank accounts

13

Account 1
$500

Account 2
$300

Account 3
$200

Thread A
$150

Thread B
$200

• Thread A:

- Read balance of account 2: $300

• Thread B:

- Read balance of account 2: $300

Example: bank accounts

• Example: bank accounts

14

Account 1
$500

Account 2
$100

Account 3
$400

Thread A
$150

Thread B
$200

• Thread A:

- Read balance of account 2: $300

• Thread B:

- Read balance of account 2: $300
- Update balance of account 2

Example: bank accounts

• Example: bank accounts

15

Account 1
$650

Account 2
$150

Account 3
$400

Thread A
$150

Thread B
$200

• Thread A:

- Read balance of account 2: $300

- Update balance of account 2

• Thread B:

- Read balance of account 2: $300
- Update balance of account 2

!

Attempt #2

• Use locks so that updates are atomic:

16

struct Account {
 int balance;
 Mutex lock;
};

void deposit(int amount, Account *acc) {
 acc->lock.acquireLock();
 acc->balance = acc->balance + amount;
 acc->lock.releaseLock();
}

void transfer(int amount, Account *from, Account *to) {
 withdraw(amount, from);
 deposit (amount, to);
}

Oh no, inconsistent state!

Put balance update
in a critical section

Let’s include a lock this time

Attempt #3

• We need to implement transfer differently

17

void transfer(int amount, Account *from, Account *to) {
 from->lock.acquireLock();
 to->lock.acquireLock();
 from->balance = from->balance - amount;
 to->balance = to->balance + amount;
 to->lock.releaseLock();
 from->lock.releaseLock();
}

• Thread A:

- transfer(100, acc1, acc2)

• Thread B:

- transfer(200, acc2, acc1)

struct Account {
 int balance;
 Mutex lock;
};

Attempt #4

• Take locks in an a fixed (but arbitrary) order; release in the opposite order

18

void transfer(int amount, Account *from, Account *to) {
 if (from->accountNumber < to->accountNumber) {
 from->lock.acquireLock();
 to->lock.acquireLock();
 ...
 to->lock.releaseLock();
 from->lock.releaseLock();
 } else {
 to->lock.acquireLock();
 from->lock.acquireLock();
 ...
 from->lock.releaseLock();
 to->lock.releaseLock();
 }
}

struct Account {
 int balance;
 Mutex lock;
};

Extending the example

• What happens if we want to…

- Block (wait) until the 'from' account has sufficient funds?

- Withdraw from a second account if the first does not have sufficient funds?

• Suppose I hold locks #3 and #5…

• And now need to acquire lock #2, or #4, or…

19

Advantages and disadvantages

• Difficulties / problems (among others):

- Taking locks in the wrong order

- Too few locks (lock contention decreases the amount of available concurrency)

- Too many locks (increases overhead and subtle lock dependencies that can increase the change of deadlock)

- Error recovery (exceptions -> data integrity)

- No modular programming! (transfer; lock order)

• Advantages:

- Easy critical sections if you have a single lock

- Mutual exclusion!

20

Threads in Haskell

21

User space

Threads

• The fundamental action in concurrency: create a new thread of control

- Takes a computation of type IO () as its argument

- This IO action executes in a new thread concurrently with other threads

- No specified order in which threads execute

- Haskell user space threads are very cheap: ~1.5 KB / thread, easily run thousands of threads

22

forkIO :: IO () -> IO ThreadId

Example

• Interleaving of two threads

23

import Control.Concurrent
import Control.Monad

main :: IO ()
main = do
 let n = 100

 forkIO $ replicateM_ n (putChar 'A')
 forkIO $ replicateM_ n (putChar 'x')

 putStrLn "done"

• Interleaving of two threads

- The program exits when main returns, even if there are other threads still running!

• How to check whether the child thread has completed?

- The term n :: Int is shared between both threads (captured); this is safe because it is immutable

Sharing state

24

Sharing state

• IORef: mutable reference to some value

- i.e. a regular variable in C#

- Compare-and-swap behaviour using casIORef

- Not designed for concurrency: need to protect critical sections yourself

• MVar: synchronised mutable references

- Like IORefs, but with a lock attached for safe concurrent access

- …plus some very useful semantics

25

IORefs

• In most languages variables are mutable by default

• In Haskell, mutable variables must be handled explicitly

- Notice that whether a variable is mutable is now reflected in its type!

26

import Data.IORef

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

IORefs: Example

• Shared state concurrency using IORef

27

import Control.Concurrent
import Data.IORef

main :: IO ()
main = do
 ref <- newIORef 0

 forkIO $ writeIORef ref 1
 forkIO $ writeIORef ref 2

 result <- readIORef ref
 print result

-- ¯_(ツ)_/¯

MVars

• Synchronising variables for communication between concurrent threads

- An MVar is a box that is either empty or full

- takeMVar removes the value from the box; blocks if it is currently empty

- putMVar puts a value in the box; blocks if it is currently full

- readMVar reads the current value without removing it (and blocks if empty)

28

import Control.Concurrent

newMVar :: a -> IO (MVar a)
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a

MVars

• Synchronising variables for communication between concurrent threads

29

import Control.Concurrent

main :: IO ()
main = do
 m <- newEmptyMVar
 forkIO $ do
 putMVar m "hello"

 x <- takeMVar m
 putStr x

putMVar m "world"

putStr ", "
y <- takeMVar m
putStr y

MVars

• The runtime system can (sometimes) detect when a group of threads are deadlocked

- Only a conservative approximation to the future behaviour of the program

- Can be useful for debugging (but don’t rely on it)

30

main :: IO ()
main = do
 m <- newEmptyMVar
 takeMVar m

$./Test
Test: thread blocked indefinitely in an MVar operation

MVars

• If multiple threads are blocked in takeMVar or putMVar, a single thread is woken up in FIFO order: fairness

• If readMVar blocks, it will receive the next put value

• Other useful operations

- withMVar can be used to protect critical sections (read the docs!)

31

takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a

withMVar :: MVar a -> (a -> IO b) -> IO b

An MVar is…

• A lock

- MVar () behaves as a lock: full is unlocked, empty is locked

- Can be used as a mutex to protect some shared state or critical section

• A one-place channel

- For passing messages between threads

- An asynchronous channel with a buffer size of one

• A container for shared mutable data

• A building block for constructing larger concurrent data structures

32

MVars as a building block (I)

Asynchronous computations

33

Asynchronous computations

• The goal:

- Want a way to run computations asynchronously and wait for their results

- Cancel running computations

- Basic interface:

34

data Async a

runAsync :: IO a -> IO (Async a)
wait :: Async a -> IO a
poll :: Async a -> IO (Maybe a)
cancel :: Async a -> IO ()

runAsync

• Perform an action asynchronously, and later wait for the results

35

data Async a = Async ThreadId (MVar a)

runAsync :: IO a -> IO (Async a)
runAsync action = do
 var <- newEmptyMVar
 tid <- forkIO $ do
 res <- action
 putMVar var res

 return (Async tid var)

wait, cancel and poll

• Wait for the computation to complete or cancel it

36

wait :: Async a -> IO a
wait (Async _ var) = readMVar var

cancel :: Async a -> IO ()
cancel (Async tid _) = killThread tid

poll :: Async a -> IO (Maybe a)
poll (Async _ var) = tryReadMVar var

Next time

• Non-blocking algorithms

• IORefs and MVars as building blocks

• You can now implement the first two parts of IBAN: count and list

• Next week Monday: no lectures because of the protests

37

