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Recap
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Why?

• Concurrency control required for safe access to shared state between threads


- Examples we’ve seen previously:
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Account 1 
$500

Account 2 
$300

Account 3 
$200

Thread A 
$150

Thread B 
$200

head last



Attempt #4

• Take locks in an a fixed (but arbitrary) order; release in the opposite order
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void transfer(int amount, Account *from, Account *to) { 
  if (from->accountNumber < to->accountNumber) { 
    from->lock.acquireLock(); 
    to->lock.acquireLock(); 
    ... 
    to->lock.releaseLock(); 
    from->lock.releaseLock(); 
  } else { 
    to->lock.acquireLock(); 
    from->lock.acquireLock(); 
    ... 
    from->lock.releaseLock(); 
    to->lock.releaseLock(); 
  } 
}

struct Account { 
  int balance; 
  Mutex lock; 
};

LAST WEEK



Why?

• Concurrency control


- Mutual exclusion: critical resources => critical section

• Only one process allowed in the critical section at once

- Deadlock

- Starvation
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Review

• What are the requirements for implementing mutual exclusion?


• What are the requirements for using critical sections?
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Review

• Using critical sections


- Threads should stay in the critical section for as little time as possible

- What is the consequence of taking locks for too long?
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countMode :: MVar Int -> [Int] -> IO () 
countMode var accounts = 
  modifyMVar_ var $ \total -> 
    total + sum [ 1 | a <- accounts, mtest a ]

🤔



Dining philosophers

�8https://en.wikipedia.org/wiki/Dining_philosophers_problem

• Canonical example of synchronisation issues 
and how to resolve them


- Philosophers alternatively think and eat

- Require both forks to start eating

- Each fork is held by one philosopher at a time

https://en.wikipedia.org/wiki/Dining_philosophers_problem


Atomic blocks
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An alternative

• The idea:


- Garbage collectors allow us to program without malloc() and free() 

• Can we do the same for locks?

• What would that look like?

- Modular concurrency!

- Locks are pessimistic; let’s be optimistic instead!
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Software transactional memory

• A [programming languages/software-based] technique for implementing atomic blocks


- Atomicity: effects become visible to other threads all at once

- Isolation: cannot see the effects of other threads

- Use a different type (STM) to wrap operations whose effects can be undone if necessary (more on this later)
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import Control.Concurrent.STM 

data STM a          -- abstract 
instance Monad STM  -- among other things 

atomically :: STM a -> IO a



Software transactional memory

• Sharing state


- Instead of IORef, we use TVar as a transactional variable

- Basic interface:
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import Control.Concurrent.STM.TVar 

newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM ()



Revisiting accounts

• STM actions are composed together in the same way as IO actions
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type Account = TVar Int 

deposit :: Int -> Account -> STM () 
deposit amount account = do 
  balance <- readTVar account 
  writeTVar amount (balance + amount) 

withdraw :: Int -> Account -> STM () 
withdraw amount = deposit (-amount) 

transfer :: Int -> Account -> Account -> IO () 
transfer amount from to = 
  atomically $ do 
    withdraw amount from 
    deposit amount to

void transfer(in
t amount, Accoun

t *from, Account
 *to) { 

  if (from->acco
untNumber < to->

accountNumber) {
 

    from->lock.a
cquireLock(); 

    to->lock.acq
uireLock(); 

    ... 
    to->lock.rel

easeLock(); 

    from->lock.r
eleaseLock(); 

  } else { 
    to->lock.acq

uireLock(); 

    from->lock.a
cquireLock(); 

    ... 
    from->lock.r

eleaseLock(); 

    to->lock.rel
easeLock(); 

  } 
}



STM

• Types are used to isolate transactional actions from arbitrary IO actions


- To get from STM to IO we have to execute the entire action atomically

- Can’t mix monads!
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bad :: Int -> Account -> ?? () 
bad amount account = do 
  putStrLn “withdrawing!”    -- :: IO () 
  withdraw amount account    -- :: STM () 

good :: Int -> Account -> IO () 
good amount account = do 
  putStrLn “withdrawing!”               -- :: IO () 
  atomically $ withdraw amount account  -- :: IO ()



Implementing transactional memory

• How to implement atomically


- Single global lock?

- Instead: optimistic execution, without taking any locks

• At the start of the atomic block begin a thread local transaction log


- Each writeTVar records the address and the new value to the log

- Each readTVar searches the log and

• Takes the value of an earlier writeTVar; or

• Reads the TVar and records the value into the log
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Implementing transactional memory

• At the end of the atomic block the transaction log must be validated


- Checks each readTVar in the log matches the current value

- If successful all writeTVar recorded in the log are committed to the real TVars

- The validate and commit steps together must be truly atomic

�16



Implementing transactional memory

• What if validation fails?


- The operation executed with an inconsistent view of memory

- Re-execute the transaction with a new transaction log

• Since none of the writes are committed to memory, this is safe to do

• It is critical that the atomic block contains no actions other than reads and writes to TVars
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atomically $ do 
  x <- readTVar xv 
  y <- readTVar yv 
  if x > y 
     then brexit      -- :: IO () side effects! 
     else return ()



Summary (so far)

• STM gives us:


- Atomic transactions for shared memory

- Encapsulation of concurrent code

- Help avoid common locking problems

• Locks are pessimistic, STM is optimistic


• But…


- Just like garbage collection, is no silver bullet

- Can not solve all problems: e.g. starvation & contention
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Blocking & Choice
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Software transactional memory

• Sharing state


- Instead of MVar we have an equivalent TMVar

- A variable is either full or empty: threads wait for the  
appropriate state

- Basic interface:

�20

import Control.Concurrent.STM.TMVar 

newTMVar      :: a -> STM (TMVar a) 
newEmptyTMVar :: STM (TMVar a) 
takeTMVar     :: TMVar a -> STM a 
readTMVar     :: TMVar a -> STM a 
putTMVar      :: TMVar a -> a -> STM ()



Blocking

• Wait for some condition to be true or a resource to become available


- Abandon the current transaction and begin again

- Only when the inputs change, to avoid busy waiting (how?)
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retry :: STM a



Accounts, revisited

• Suppose we want to block if the account will be overdrawn


- Because the transaction read account on the way to retry, the thread can wait until this variable changes 
before trying again
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type Account = TVar Int 

withdraw :: Int -> Account -> STM () 
withdraw amount account = do 
  balance <- readTVar account 
  if amount > 0 && amount > balance 
     then retry 
     else writeTVar account (balance + amount)



Example: TMVar

• Transactional equivalent of MVar


- Shared variable which is either empty or full

- Easy to implement in terms of TVar!
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newtype TMVar a = TMVar (TVar (Maybe a)) 

newEmptyTMVar :: STM (TMVar a) 
takeTMVar     :: TMVar a -> STM a 
putTMVar      :: TMVar a -> a -> STM ()

newEmptyTMVar :: STM (TMVar a) 
newEmptyTMVar = do 
  t <- newTVar Nothing 
  return (TMVar t)



TMVar

• Block if the desired variable is empty, and return the contents when it is full
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takeTMVar :: TMVar a -> STM a 
takeTMVar (TMVar t) = do 
  m <- readTVar t 
  case m of 
    Nothing -> retry 
    Just a  -> do 
      writeTVar t Nothing 
      return a

newtype TMVar a = TMVar (TVar (Maybe a))



TMVar

• Block when the variable is full, update the contents when it is empty
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putTMVar :: TMVar a -> a -> STM a 
putTMVar (TMVar t) a = do 
  m <- readTVar t 
  case m of 
   Nothing -> writeTVar t (Just a) 
   Just _  -> retry

newtype TMVar a = TMVar (TVar (Maybe a))



Question

• Threads block on an MVar are woken up in FIFO order


- This is the fairness guarantee

• When multiple threads are blocked on a TVar, which should be woken up?


- Consider: who can make progress? Example:
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do x <- takeTVar v 
   when (x != 42) retry

- All threads retrying on a variable are woken up



Choice

• Choose an alternative action if the first transaction calls retry


- If the first action returns a result, that is the result of the orElse

- If the first action retries, the second action runs

- If the second action retries, the whole action retries

- Since the result of orElse is also an STM action, you can a `orElse` (b `orElse` (c `orElse` …))
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orElse :: STM a -> STM a -> STM a



Accounts, re-revisited

• Suppose we want to withdraw from a second account if the first has insufficient funds
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withdraw2 :: Int -> Account -> Account -> STM () 
withdraw2 amount account1 account2 = 
  withdraw amount account1 
  `orElse` 
  withdraw amount account2



STM as a building block (1)

Asynchronous computations
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Asynchronous computations, revisited

• The goal:


- Run computations asynchronously and wait for the results

- Cancel and race running computations

- Interface:
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data Async a 

async  :: IO a -> IO (Async a) 
wait   :: Async a -> IO a 
poll   :: Async a -> IO (Maybe a) 
cancel :: Async a -> IO () 
race   :: Async a -> Async b -> IO (Either a b)



async

• Perform an action asynchronously and later wait for the results
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data Async a = Async ThreadId (TMVar a) 

async :: IO a -> IO (Async a) 
async action = do 
  var <- newEmptyTMVarIO 
  tid <- forkIO $ do 
    res <- action 
    atomically $ putTMVar var res 
   
  return (Async tid var)



wait

• Wait for the computation to complete
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waitSTM :: Async a -> STM a 
waitSTM (Async _ var) = readTMVar var 

wait :: Async a -> IO a 
wait a = 
  atomically $ waitSTM a 

race :: Async a -> Async b -> IO (Either a b) 
race a b = 
  atomically $ 
    fmap Left  (waitSTM a) 
    `orElse` 
    fmap Right (waitSTM b)

- Exercise: write an alternative race that kills the losing thread



STM as a building block (II)

Concurrent Map
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Key-value map

• The goal:


- A key-value map that can be accessed concurrently by multiple threads

- Basic interface:
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data CMap k v 

insert :: Ord k => k -> v -> CMap k v -> CMap k v 
lookup :: Ord k => k -> CMap k v -> Maybe v



Option #1

• A regular (pure) key-value map in a mutable box


- Simple, safe

- No concurrency!
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import Control.Concurrent.MVar 
import qualified Data.Map as M 

data CMap k v = CMap (MVar (M.Map k v)) 

insert :: Ord k => k -> v -> CMap k v -> IO () 
lookup :: Ord k => k -> CMap k v -> IO (Maybe v)



Option #2

• A pure map in a box, but this time using STM


- Safe concurrent lookup

- Insertion updates the entire tree (all other threads must retry)
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import Control.Concurrent.STM 
import qualified Data.Map as M 

data CMap k v = CMap (TVar (M.Map k v)) 

insert :: Ord k => k -> v -> CMap k v -> STM () 
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)



Option #3

• A pure map with mutable values


- Allows values to be read and adjusted (mutated) concurrently

- Fixed key set
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import Control.Concurrent.STM 
import qualified Data.Map as M 

data CMap k v = CMap (M.Map k (TVar v)) 

adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM () 
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)



Option #4

• Implement the data structure ourselves


- Goal: Fully concurrent insertion and lookup

- Updates to disjoint parts of the tree do not conflict with each other

�38

data CMap k v = CMap (TVar (Node k v)) 
data Node k v 
  = Bin k (TVar v) (CMap k v) (CMap k v) 
  | Tip 

insert :: Ord k => k -> v -> CMap k v -> STM () 
lookup :: Ord k => k -> CMap k v -> STM (Maybe v) 
adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM ()



Option #4

• Lookup a value in the map


- Standard recursive traversal

- Try to implement insert!

• Important! Minimise the number of writeTVar!
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lookup :: Ord k => k -> CMap k v -> STM (Maybe v) 
lookup key (CMap ref) = readTVar ref >>= go 
  where 
    go Tip           = return Nothing 
    go (Bin k v l r) = 
      case compare key k of 
        LT -> lookup key l 
        GT -> lookup key r 
        EQ -> Just <$> readTVar v

data CMap k v = CMap (TVar (Node k v)) 
data Node k v 
  = Bin k (TVar v) (CMap k v) (CMap k v) 
  | Tip



Summary
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What can we not do with STM?

• STM offers composable blocking and atomicity


- Concurrent programming without locks!

• But, there are also things that it can not do compared to using locks 


- Fairness: all blocked threads are woken up when a TVar changes

- Threads can not communicate that they are blocking
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Performance considerations

• atomically works by accumulating a log of writeTVar and readTVar operations; this has consequences:


- Discarding the effects of the transaction is easy: delete the log

- Each readTVar must traverse the log to see if it was written by an earlier writeTVar: O(n)

- A transaction that called retry is woken up whenever one of the TVar in its read set changes: O(n)

- A long running transaction can re-execute indefinitely because it is repeatedly aborted by shorter transactions: 
starvation

• Most abstractions have a runtime cost…
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Photo by Jamie Street

tot ziens

https://unsplash.com/@jamie452?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Extra slides

• Parallel and Concurrent Programming in Haskell 
Chapter 10: Software Transactional Memory


• STM library 
https://hackage.haskell.org/package/stm
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https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch10.html
https://hackage.haskell.org/package/stm

