
B3CC: Concurrency
06: Software Transactional Memory (1)

Tom Smeding

Recap

�2

Why?

• Concurrency control required for safe access to shared state between threads

- Examples we’ve seen previously:

�3

Account 1
$500

Account 2
$300

Account 3
$200

Thread A
$150

Thread B
$200

head last

Attempt #4

• Take locks in an a fixed (but arbitrary) order; release in the opposite order

�4

void transfer(int amount, Account *from, Account *to) {
 if (from->accountNumber < to->accountNumber) {
 from->lock.acquireLock();
 to->lock.acquireLock();
 ...
 to->lock.releaseLock();
 from->lock.releaseLock();
 } else {
 to->lock.acquireLock();
 from->lock.acquireLock();
 ...
 from->lock.releaseLock();
 to->lock.releaseLock();
 }
}

struct Account {
 int balance;
 Mutex lock;
};

LAST WEEK

Why?

• Concurrency control

- Mutual exclusion: critical resources => critical section

• Only one process allowed in the critical section at once

- Deadlock

- Starvation

�5

Review

• What are the requirements for implementing mutual exclusion?

• What are the requirements for using critical sections?

�6

Review

• Using critical sections

- Threads should stay in the critical section for as little time as possible

- What is the consequence of taking locks for too long?

�7

countMode :: MVar Int -> [Int] -> IO ()
countMode var accounts =
 modifyMVar_ var $ \total ->
 total + sum [1 | a <- accounts, mtest a]

🤔

Dining philosophers

�8https://en.wikipedia.org/wiki/Dining_philosophers_problem

• Canonical example of synchronisation issues 
and how to resolve them

- Philosophers alternatively think and eat

- Require both forks to start eating

- Each fork is held by one philosopher at a time

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Atomic blocks

�9

An alternative

• The idea:

- Garbage collectors allow us to program without malloc() and free()

• Can we do the same for locks?

• What would that look like?

- Modular concurrency!

- Locks are pessimistic; let’s be optimistic instead!

�10

Software transactional memory

• A [programming languages/software-based] technique for implementing atomic blocks

- Atomicity: effects become visible to other threads all at once

- Isolation: cannot see the effects of other threads

- Use a different type (STM) to wrap operations whose effects can be undone if necessary (more on this later)

�11

import Control.Concurrent.STM

data STM a -- abstract
instance Monad STM -- among other things

atomically :: STM a -> IO a

Software transactional memory

• Sharing state

- Instead of IORef, we use TVar as a transactional variable

- Basic interface:

�12

import Control.Concurrent.STM.TVar

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Revisiting accounts

• STM actions are composed together in the same way as IO actions

�13

type Account = TVar Int

deposit :: Int -> Account -> STM ()
deposit amount account = do
 balance <- readTVar account
 writeTVar amount (balance + amount)

withdraw :: Int -> Account -> STM ()
withdraw amount = deposit (-amount)

transfer :: Int -> Account -> Account -> IO ()
transfer amount from to =
 atomically $ do
 withdraw amount from
 deposit amount to

void transfer(in
t amount, Accoun

t *from, Account
 *to) {

 if (from->acco
untNumber < to->

accountNumber) {

 from->lock.a
cquireLock();

 to->lock.acq
uireLock();

 ...
 to->lock.rel

easeLock();

 from->lock.r
eleaseLock();

 } else {
 to->lock.acq

uireLock();

 from->lock.a
cquireLock();

 ...
 from->lock.r

eleaseLock();

 to->lock.rel
easeLock();

 }
}

STM

• Types are used to isolate transactional actions from arbitrary IO actions

- To get from STM to IO we have to execute the entire action atomically

- Can’t mix monads!

�14

bad :: Int -> Account -> ?? ()
bad amount account = do
 putStrLn “withdrawing!” -- :: IO ()
 withdraw amount account -- :: STM ()

good :: Int -> Account -> IO ()
good amount account = do
 putStrLn “withdrawing!” -- :: IO ()
 atomically $ withdraw amount account -- :: IO ()

Implementing transactional memory

• How to implement atomically

- Single global lock?

- Instead: optimistic execution, without taking any locks

• At the start of the atomic block begin a thread local transaction log

- Each writeTVar records the address and the new value to the log

- Each readTVar searches the log and

• Takes the value of an earlier writeTVar; or

• Reads the TVar and records the value into the log

�15

Implementing transactional memory

• At the end of the atomic block the transaction log must be validated

- Checks each readTVar in the log matches the current value

- If successful all writeTVar recorded in the log are committed to the real TVars

- The validate and commit steps together must be truly atomic

�16

Implementing transactional memory

• What if validation fails?

- The operation executed with an inconsistent view of memory

- Re-execute the transaction with a new transaction log

• Since none of the writes are committed to memory, this is safe to do

• It is critical that the atomic block contains no actions other than reads and writes to TVars

�17

atomically $ do
 x <- readTVar xv
 y <- readTVar yv
 if x > y
 then brexit -- :: IO () side effects!
 else return ()

Summary (so far)

• STM gives us:

- Atomic transactions for shared memory

- Encapsulation of concurrent code

- Help avoid common locking problems

• Locks are pessimistic, STM is optimistic

• But…

- Just like garbage collection, is no silver bullet

- Can not solve all problems: e.g. starvation & contention

�18

Blocking & Choice

�19

Software transactional memory

• Sharing state

- Instead of MVar we have an equivalent TMVar

- A variable is either full or empty: threads wait for the  
appropriate state

- Basic interface:

�20

import Control.Concurrent.STM.TMVar

newTMVar :: a -> STM (TMVar a)
newEmptyTMVar :: STM (TMVar a)
takeTMVar :: TMVar a -> STM a
readTMVar :: TMVar a -> STM a
putTMVar :: TMVar a -> a -> STM ()

Blocking

• Wait for some condition to be true or a resource to become available

- Abandon the current transaction and begin again

- Only when the inputs change, to avoid busy waiting (how?)

�21

retry :: STM a

Accounts, revisited

• Suppose we want to block if the account will be overdrawn

- Because the transaction read account on the way to retry, the thread can wait until this variable changes
before trying again

�22

type Account = TVar Int

withdraw :: Int -> Account -> STM ()
withdraw amount account = do
 balance <- readTVar account
 if amount > 0 && amount > balance
 then retry
 else writeTVar account (balance + amount)

Example: TMVar

• Transactional equivalent of MVar

- Shared variable which is either empty or full

- Easy to implement in terms of TVar!

�23

newtype TMVar a = TMVar (TVar (Maybe a))

newEmptyTMVar :: STM (TMVar a)
takeTMVar :: TMVar a -> STM a
putTMVar :: TMVar a -> a -> STM ()

newEmptyTMVar :: STM (TMVar a)
newEmptyTMVar = do
 t <- newTVar Nothing
 return (TMVar t)

TMVar

• Block if the desired variable is empty, and return the contents when it is full

�24

takeTMVar :: TMVar a -> STM a
takeTMVar (TMVar t) = do
 m <- readTVar t
 case m of
 Nothing -> retry
 Just a -> do
 writeTVar t Nothing
 return a

newtype TMVar a = TMVar (TVar (Maybe a))

TMVar

• Block when the variable is full, update the contents when it is empty

�25

putTMVar :: TMVar a -> a -> STM a
putTMVar (TMVar t) a = do
 m <- readTVar t
 case m of
 Nothing -> writeTVar t (Just a)
 Just _ -> retry

newtype TMVar a = TMVar (TVar (Maybe a))

Question

• Threads block on an MVar are woken up in FIFO order

- This is the fairness guarantee

• When multiple threads are blocked on a TVar, which should be woken up?

- Consider: who can make progress? Example:

�26

do x <- takeTVar v
 when (x != 42) retry

- All threads retrying on a variable are woken up

Choice

• Choose an alternative action if the first transaction calls retry

- If the first action returns a result, that is the result of the orElse

- If the first action retries, the second action runs

- If the second action retries, the whole action retries

- Since the result of orElse is also an STM action, you can a `orElse` (b `orElse` (c `orElse` …))

�27

orElse :: STM a -> STM a -> STM a

Accounts, re-revisited

• Suppose we want to withdraw from a second account if the first has insufficient funds

�28

withdraw2 :: Int -> Account -> Account -> STM ()
withdraw2 amount account1 account2 =
 withdraw amount account1
 `orElse`
 withdraw amount account2

STM as a building block (1)

Asynchronous computations

�29

Asynchronous computations, revisited

• The goal:

- Run computations asynchronously and wait for the results

- Cancel and race running computations

- Interface:

�30

data Async a

async :: IO a -> IO (Async a)
wait :: Async a -> IO a
poll :: Async a -> IO (Maybe a)
cancel :: Async a -> IO ()
race :: Async a -> Async b -> IO (Either a b)

async

• Perform an action asynchronously and later wait for the results

�31

data Async a = Async ThreadId (TMVar a)

async :: IO a -> IO (Async a)
async action = do
 var <- newEmptyTMVarIO
 tid <- forkIO $ do
 res <- action
 atomically $ putTMVar var res

 return (Async tid var)

wait

• Wait for the computation to complete

�32

waitSTM :: Async a -> STM a
waitSTM (Async _ var) = readTMVar var

wait :: Async a -> IO a
wait a =
 atomically $ waitSTM a

race :: Async a -> Async b -> IO (Either a b)
race a b =
 atomically $
 fmap Left (waitSTM a)
 `orElse`
 fmap Right (waitSTM b)

- Exercise: write an alternative race that kills the losing thread

STM as a building block (II)

Concurrent Map

�33

Key-value map

• The goal:

- A key-value map that can be accessed concurrently by multiple threads

- Basic interface:

�34

data CMap k v

insert :: Ord k => k -> v -> CMap k v -> CMap k v
lookup :: Ord k => k -> CMap k v -> Maybe v

Option #1

• A regular (pure) key-value map in a mutable box

- Simple, safe

- No concurrency!

�35

import Control.Concurrent.MVar
import qualified Data.Map as M

data CMap k v = CMap (MVar (M.Map k v))

insert :: Ord k => k -> v -> CMap k v -> IO ()
lookup :: Ord k => k -> CMap k v -> IO (Maybe v)

Option #2

• A pure map in a box, but this time using STM

- Safe concurrent lookup

- Insertion updates the entire tree (all other threads must retry)

�36

import Control.Concurrent.STM
import qualified Data.Map as M

data CMap k v = CMap (TVar (M.Map k v))

insert :: Ord k => k -> v -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)

Option #3

• A pure map with mutable values

- Allows values to be read and adjusted (mutated) concurrently

- Fixed key set

�37

import Control.Concurrent.STM
import qualified Data.Map as M

data CMap k v = CMap (M.Map k (TVar v))

adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)

Option #4

• Implement the data structure ourselves

- Goal: Fully concurrent insertion and lookup

- Updates to disjoint parts of the tree do not conflict with each other

�38

data CMap k v = CMap (TVar (Node k v))
data Node k v
 = Bin k (TVar v) (CMap k v) (CMap k v)
 | Tip

insert :: Ord k => k -> v -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)
adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM ()

Option #4

• Lookup a value in the map

- Standard recursive traversal

- Try to implement insert!

• Important! Minimise the number of writeTVar!

�39

lookup :: Ord k => k -> CMap k v -> STM (Maybe v)
lookup key (CMap ref) = readTVar ref >>= go
 where
 go Tip = return Nothing
 go (Bin k v l r) =
 case compare key k of
 LT -> lookup key l
 GT -> lookup key r
 EQ -> Just <$> readTVar v

data CMap k v = CMap (TVar (Node k v))
data Node k v
 = Bin k (TVar v) (CMap k v) (CMap k v)
 | Tip

Summary

�40

What can we not do with STM?

• STM offers composable blocking and atomicity

- Concurrent programming without locks!

• But, there are also things that it can not do compared to using locks

- Fairness: all blocked threads are woken up when a TVar changes

- Threads can not communicate that they are blocking

�41

Performance considerations

• atomically works by accumulating a log of writeTVar and readTVar operations; this has consequences:

- Discarding the effects of the transaction is easy: delete the log

- Each readTVar must traverse the log to see if it was written by an earlier writeTVar: O(n)

- A transaction that called retry is woken up whenever one of the TVar in its read set changes: O(n)

- A long running transaction can re-execute indefinitely because it is repeatedly aborted by shorter transactions:
starvation

• Most abstractions have a runtime cost…

�42

Photo by Jamie Street

tot ziens

https://unsplash.com/@jamie452?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Extra slides

• Parallel and Concurrent Programming in Haskell 
Chapter 10: Software Transactional Memory

• STM library 
https://hackage.haskell.org/package/stm

�44

https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch10.html
https://hackage.haskell.org/package/stm

