W
= ¥ = Utrecht University

NS

B3CC: Concurrency
06: Delta-stepping

lvo Gabe de Wolff

» The second practical assignment has been released

- https://ics.uu.nl/docs/vakken/b3cc/assessment.html
- You may work in pairs, if you wish

- Deadline: 22-12-2023 @ 23:59

https://ics.uu.nl/docs/vakken/b3cc/assessment.html

Parallel algorithms

* You have seen many sequential algorithms
- In“datastructuren”

» Can we convert a sequential algorithm to a parallel algorithm?
- No automatic approach
- Sequential code typically has a long, sequential, critical path

» Today: Converting Dijkstra’s shortest-path algorithm to Delta-stepping

10
11
4
4

» A central problem in algorithmic graph theory is the single-source shortest path problem

- e.g.starting at vertex A, what is the shortest path to reach vertex F!
- Many practical and theoretical applications
- One of the benchmarks used in the Graph500 supercomputer ranking

* The smallest problem size uses 22¢ vertices, requiring 17 GB RAM

https://en.wikipedia.org/wiki/Shortest path problem 4

https://en.wikipedia.org/wiki/Shortest_path_problem

« Given...

- A directed graph G(V, E) with n = |V] nodes (or vertices) and m = |E| edges
- A distinguished node in the graph s: the “source”
- A function c that returns the (hon-negative) weight of a given edge in G

» Objective:

- For each node v reachable from s,

compute the weight of the minimum-weight (i.e. shortest) path from s to v
- The weight of the path is the sum of the weights of its edges, denoted dist(s,v) or dist(v)

- If v is not reachable from s, then dist(s,v) = o

» Keep track of tentative distance per vertex

- The distance of the shortest known path
* Repeatedly,

- Take the unvisited node v with the shortest tentative distance

- |ts tentative distance is now fixed

- Look at its neighbors: we may have a shorter path to them, via v

- Update tentative distances of neighbors accordingly

Dijkstra’s algorithm

» Keep track of tentative distance per vertex

- The distance of the shortest known path

- Take the unvisited node v with the shortest tentative distance

- Its tentative distance is now fixed O(\Og n) with
| | | proper data structure
- Look at its neighbors: we may have a shorter path to them, via v .
(Min heap)

- Update tentative distances of neighbors accordingly

» Keep track of tentative distance per vertex

- The distance of the shortest known path
» Repeatedly,
- Take some set of nodes
. Thei e di o ed
- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly

Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,

- Take some set of nhodes

Work may be redundant:
_ater rterations may need to look at

- Look at their neighbors: we may have a shorter path to them this node again.

. Thei e di cad

- Update tentative distances of neighbors accordingly Trade-off between parallelization
and work overhead

Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,
- Take some set of nodes
- tHhelrtentarie distaneas are Rove theaa
- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly

VVhat

Only -

set?

he fi

Dijkst

ra’s a

All nodes:
Bellman-Forag

~st unvisited node:

oorithm

10

» Delta-stepping is a parallelisable single-source shortest path algorithm

- Algorithm stores an array of buckets B

- Nodes are grouped by tentative distance in buckets
- The range of distances in a bucket is parameter A (Greek letter Delta)

- Bucket BJi] stores the set of unsettled nodes v with
- A<tent(v)<(i+1)-A

https://www.sciencedirect.com/science/article/pii/S019667 7403000762 11

https://www.sciencedirect.com/science/article/pii/S0196677403000762

» Keep track of tentative distance per vertex

- The distance of the shortest known path
* Repeatedly,

- Take all nodes from the first non-empty bucket

. Thei e di fcad

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly

12

Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,

- Take all nodes from the first non-empty bucket

. Thei e di e

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly

This could add some of the
same nodes back into the same

bucket, or new nodes into this
bucket.

12

Light and heavy edges

* A node may repeatedly be in the same bucket.
* This gives redundant work: we repeatedly look at its neighbors.
 To reduce this, we handle light and heavy edges separately.

- Light edges (c(e) < A) may cause that nodes are added back to the same bucket.

- Heavy edges (c(e) > A) can only affect later buckets.

13

» Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes BJi]:

 Remove all nodes from BJi]

* Find requests of light edges

* Relax requests

* Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:

* Find requests of light edges

* Relax requests
14

Towards parallel shortest path

* Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes B|[i]:

 Remove all nodes from BJi]

This could add some of the same nodes

* Find requests of light edges

back into the same bucket, or new nodes
* Relax requests into this bucket.

» Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in BJi]:

* Find requests of light edges

* Relax requests

 All vertices have infinite tentative distance, except s which has distance zero

 All buckets are empty, except B[0] which contains s

» How many buckets do we need?

- Depends on the longest path

- Or, on the longest edge: many buckets will be empty.

* with a cyclic buffer we can reuse the buckets we no longer need.

15

Basic algorithm

foreach v € V do tent(v) := o0

relax(s, 0); (* Insert source node with distance 0 *)
while —1sEmpty(B) do (** A phase: Some queued nodes left (a) *)
[:=min{j >0: B[j]# ¥} (** Smallest nonempty bucket (b) *)

R =1 (** No nodes deleted for bucket B[i] yet *)
while B[i] # ¢ do (* New phase (c¢) *)
Req := findRequests(B[i], light) (** Create requests for light edges (d) *)

R := RU BJi] (* Remember deleted nodes (e) *)
Bl[i]:=9 (* Current bucket empty ~ *)
relaxRequests(Req) (** Do relaxations, nodes may (re)enter B[i] () *)

Req := findRequests(R, heavy) (* Create requests for heavy edges (g) *)
relaxRequests(Req) (* Relaxations will not refill B[i] (h) *)

Function findRequests(V’, kind : {light, heavy}) : set of Request
return {(w, tent(v) +c(v, w)): ve V' A (v, w) € Exing)}

Procedure relaxRequests(Req)
foreach (w, x) € Req do relax(w, x)

Procedure relax(w, x) (* Insert or move w 1n B if x < tent(w) *)
if x < tent(w) then

B[[tent(w)/A]|] := B[|tent(w)/A]]\ {w} (* If 1n, remove from old bucket *)

B[|x /Al := B[|x /Al U{w} (* Insert into new bucket *)

tent(w) :=x

Example

On blackboard

Utilities

18

* Inductive representation for graph structures

- Data.Graph.Inductive.Graph contains functions for querying the given graph

* Number of nodes / vertices in the graph

* Return the in / out edges for the given node

https://hackage.haskell.org/package/fdl 19

https://hackage.haskell.org/package/fgl-5.8.0.0/docs/Data-Graph-Inductive-Graph.html
https://hackage.haskell.org/package/fgl

« Assorted immutable data structures

- [Int]Map (dictionary), [Int]Set, etc.

- Putin an IORef/MVar/etc. to create a simple (non-concurrent) mutable container

https://hackage.haskell.org/package/containers 20

https://hackage.haskell.org/package/containers

MVar (Map Int Float)

21

MVar (Map Int Float)

21

MVar (Map Int Float)

21

MVar (Map Int Float)

21

Map Int (MVar Float)

5.0

7.8

3.5

22

Map Int (MVar Float)

5.0

7.8

3.5

22

Map Int (MVar Float)

2.0
5.0

7.8

3.5

22

Map Int (MVar Float)

2.0
5.0

7.8

3.5

22

Lists vs Vectors

» Lists in Haskell are linked-lists:
- (:) and tail are O(1),

- Indexing is O(n)

* Vectors are stored as arrays, with
pointers to the values:

 Unboxed vectors store values
instead of pointers in arrays:

RN

50 7.8 3.5

50| 7.8 | 3.5

23

 (Un)boxed (im)mutable int-indexed arrays

- Provides arrays in several flavours (i.e. underlying representation), but all with the same API

- Data.Vector|[.Mutable]

* Boxed vectors (i.e. array of pointers) that can hold any structure

- Data.Vector.Storable[.Mutable]

* Unboxed vectors (i.e. array of values) that can hold only Storable (i.e. primitive) values

* You can get a pointer directly to the array elements: useful for low-level atomic instructions

- You can convert between different representations

https://hackage.haskell.org/package/vector 24

https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Mutable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable-Mutable.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Foreign-Storable.html
https://hackage.haskell.org/package/vector

Conclusion

* The long, sequential, critical path was a problem.
 Trade-off between work overhead and parallelism:

- We do some redundant work,

- but when done properly, we will get a faster algorithm!
« Separation in light and heavy edges reduces work overhead.

» It is up to you to determine where the parallelism in the algorithm is (easy) and how to exploit this (hard)

* You are free to use IORefs, MVars, STM, mutable vectors, ...

25

» If you didn’t add your name and student number to the repository,

then post a comment with them in the feedback pull request.

26

y '}James Barker

https://unsplash.com/@barkernotbaker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

