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» The second practical assignment has been released

- https://ics.uu.nl/docs/vakken/b3cc/assessment.html
- You may work in pairs, if you wish

- Deadline: 22-12-2023 @ 23:59


https://ics.uu.nl/docs/vakken/b3cc/assessment.html

Parallel algorithms

* You have seen many sequential algorithms
- In“datastructuren”

» Can we convert a sequential algorithm to a parallel algorithm?
- No automatic approach
- Sequential code typically has a long, sequential, critical path

» Today: Converting Dijkstra’s shortest-path algorithm to Delta-stepping
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» A central problem in algorithmic graph theory is the single-source shortest path problem

- e.g.starting at vertex A, what is the shortest path to reach vertex F!
- Many practical and theoretical applications
- One of the benchmarks used in the Graph500 supercomputer ranking

* The smallest problem size uses 22¢ vertices, requiring 17 GB RAM

https://en.wikipedia.org/wiki/Shortest path problem 4



https://en.wikipedia.org/wiki/Shortest_path_problem

« Given...

- A directed graph G(V, E) with n = |V] nodes (or vertices) and m = |E| edges
- A distinguished node in the graph s: the “source”
- A function c that returns the (hon-negative) weight of a given edge in G

» Objective:

- For each node v reachable from s,

compute the weight of the minimum-weight (i.e. shortest) path from s to v
- The weight of the path is the sum of the weights of its edges, denoted dist(s,v) or dist(v)

- If v is not reachable from s, then dist(s,v) = o



» Keep track of tentative distance per vertex

- The distance of the shortest known path
* Repeatedly,

- Take the unvisited node v with the shortest tentative distance

- |ts tentative distance is now fixed

- Look at its neighbors: we may have a shorter path to them, via v

- Update tentative distances of neighbors accordingly



Dijkstra’s algorithm

» Keep track of tentative distance per vertex

- The distance of the shortest known path

- Take the unvisited node v with the shortest tentative distance

- Its tentative distance is now fixed O(\Og n) with
| | | proper data structure
- Look at its neighbors: we may have a shorter path to them, via v .
(Min heap)

- Update tentative distances of neighbors accordingly




» Keep track of tentative distance per vertex

- The distance of the shortest known path
» Repeatedly,
- Take some set of nodes
. Thei e di o ed
- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly



Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,

- Take some set of nhodes

Work may be redundant:
_ater rterations may need to look at

- Look at their neighbors: we may have a shorter path to them this node again.

. Thei e di cad

- Update tentative distances of neighbors accordingly Trade-off between parallelization
and work overhead




Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,
- Take some set of nodes
- tHhelrtentarie distaneas are Rove theaa
- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly
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» Delta-stepping is a parallelisable single-source shortest path algorithm

- Algorithm stores an array of buckets B

- Nodes are grouped by tentative distance in buckets
- The range of distances in a bucket is parameter A (Greek letter Delta)

- Bucket BJi] stores the set of unsettled nodes v with
- A<tent(v)<(i+1)-A

https://www.sciencedirect.com/science/article/pii/S019667 7403000762 11



https://www.sciencedirect.com/science/article/pii/S0196677403000762

» Keep track of tentative distance per vertex

- The distance of the shortest known path
* Repeatedly,

- Take all nodes from the first non-empty bucket

. Thei e di fcad

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly
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Towards parallel shortest path

» Keep track of tentative distance per vertex
- The distance of the shortest known path
» Repeatedly,

- Take all nodes from the first non-empty bucket

. Thei e di e

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly

This could add some of the
same nodes back into the same

bucket, or new nodes into this
bucket.
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Light and heavy edges

* A node may repeatedly be in the same bucket.
* This gives redundant work: we repeatedly look at its neighbors.
 To reduce this, we handle light and heavy edges separately.

- Light edges (c(e) < A) may cause that nodes are added back to the same bucket.

- Heavy edges (c(e) > A) can only affect later buckets.

13



» Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes BJi]:

 Remove all nodes from BJi]

* Find requests of light edges

* Relax requests

* Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:

* Find requests of light edges

* Relax requests
14



Towards parallel shortest path

* Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes B|[i]:

 Remove all nodes from BJi]

This could add some of the same nodes

* Find requests of light edges

back into the same bucket, or new nodes
* Relax requests into this bucket.

» Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in BJi]:

* Find requests of light edges

* Relax requests



 All vertices have infinite tentative distance, except s which has distance zero

 All buckets are empty, except B[0] which contains s

» How many buckets do we need?

- Depends on the longest path

- Or, on the longest edge: many buckets will be empty.

* with a cyclic buffer we can reuse the buckets we no longer need.
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Basic algorithm

foreach v € V do tent(v) := o0

relax(s, 0); (* Insert source node with distance 0  *)
while —1sEmpty(B) do (** A phase: Some queued nodes left (a) *)
[ :=min{j >0: B[j]# ¥} (** Smallest nonempty bucket (b) *)

R =1 (** No nodes deleted for bucket B[i] yet *)
while B[i] # ¢ do (* New phase (c¢) *)
Req := findRequests(B[i], light) (** Create requests for light edges (d) *)

R := RU BJi] (* Remember deleted nodes (e) *)
Bl[i]:=9 (* Current bucket empty ~ *)
relaxRequests(Req) (** Do relaxations, nodes may (re)enter B[i] () *)

Req := findRequests(R, heavy) (* Create requests for heavy edges (g) *)
relaxRequests(Req) (* Relaxations will not refill B[i] (h) *)

Function findRequests(V’, kind : {light, heavy}) : set of Request
return {(w, tent(v) +c(v, w)): ve V' A (v, w) € Exing)}

Procedure relaxRequests(Req)
foreach (w, x) € Req do relax(w, x)

Procedure relax(w, x) (* Insert or move w 1n B if x < tent(w) *)
if x < tent(w) then

B[ [tent(w)/A]|] := B[|tent(w)/A]]\ {w} (* If 1n, remove from old bucket *)

B[|x /Al := B[|x /Al U{w} (* Insert into new bucket *)

tent(w) :=x




Example

On blackboard




Utilities
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* Inductive representation for graph structures

- Data.Graph.Inductive.Graph contains functions for querying the given graph

* Number of nodes / vertices in the graph

* Return the in / out edges for the given node

https://hackage.haskell.org/package/fdl 19



https://hackage.haskell.org/package/fgl-5.8.0.0/docs/Data-Graph-Inductive-Graph.html
https://hackage.haskell.org/package/fgl

« Assorted immutable data structures

- [Int]Map (dictionary), [Int]Set, etc.

- Putin an IORef/MVar/etc. to create a simple (non-concurrent) mutable container

https://hackage.haskell.org/package/containers 20



https://hackage.haskell.org/package/containers

MVar (Map Int Float)
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MVar (Map Int Float)
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MVar (Map Int Float)
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MVar (Map Int Float)
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Map Int (MVar Float)
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3.5
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Map Int (MVar Float)
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Map Int (MVar Float)
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Map Int (MVar Float)
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Lists vs Vectors

» Lists in Haskell are linked-lists:
- (:) and tail are O(1),

- Indexing is O(n)

* Vectors are stored as arrays, with
pointers to the values:

 Unboxed vectors store values
instead of pointers in arrays:

RN

50 7.8 3.5

50| 7.8 | 3.5
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 (Un)boxed (im)mutable int-indexed arrays

- Provides arrays in several flavours (i.e. underlying representation), but all with the same API

- Data.Vector|[.Mutable]

* Boxed vectors (i.e. array of pointers) that can hold any structure

- Data.Vector.Storable[.Mutable]

* Unboxed vectors (i.e. array of values) that can hold only Storable (i.e. primitive) values

* You can get a pointer directly to the array elements: useful for low-level atomic instructions

- You can convert between different representations

https://hackage.haskell.org/package/vector 24



https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Mutable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable-Mutable.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Foreign-Storable.html
https://hackage.haskell.org/package/vector

Conclusion

* The long, sequential, critical path was a problem.
 Trade-off between work overhead and parallelism:

- We do some redundant work,

- but when done properly, we will get a faster algorithm!
« Separation in light and heavy edges reduces work overhead.

» It is up to you to determine where the parallelism in the algorithm is (easy) and how to exploit this (hard)

* You are free to use IORefs, MVars, STM, mutable vectors, ...

25



» If you didn’t add your name and student number to the repository,

then post a comment with them in the feedback pull request.
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https://unsplash.com/@barkernotbaker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

