
B3CC: Concurrency
06: Delta-stepping

Ivo Gabe de Wolff

Announcement

• The second practical assignment has been released

- https://ics.uu.nl/docs/vakken/b3cc/assessment.html

- You may work in pairs, if you wish

- Deadline: 22-12-2023 @ 23:59

2

https://ics.uu.nl/docs/vakken/b3cc/assessment.html

Parallel algorithms

• You have seen many sequential algorithms

- In “datastructuren”

• Can we convert a sequential algorithm to a parallel algorithm?

- No automatic approach

- Sequential code typically has a long, sequential, critical path

• Today: Converting Dijkstra’s shortest-path algorithm to Delta-stepping

3

SSSP

• A central problem in algorithmic graph theory is the single-source shortest path problem

- e.g. starting at vertex A, what is the shortest path to reach vertex F?

- Many practical and theoretical applications

- One of the benchmarks used in the Graph500 supercomputer ranking

• The smallest problem size uses 226 vertices, requiring 17 GB RAM

4https://en.wikipedia.org/wiki/Shortest_path_problem

https://en.wikipedia.org/wiki/Shortest_path_problem

SSSP

• Given…

- A directed graph G(V, E) with n = |V| nodes (or vertices) and m = |E| edges

- A distinguished node in the graph s: the “source”

- A function c that returns the (non-negative) weight of a given edge in G

• Objective:

- For each node v reachable from s,
compute the weight of the minimum-weight (i.e. shortest) path from s to v

- The weight of the path is the sum of the weights of its edges, denoted dist(s,v) or dist(v)

- If v is not reachable from s, then dist(s,v) ≔ ∞

5

Dijkstra’s algorithm

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take the unvisited node v with the shortest tentative distance

- Its tentative distance is now fixed

- Look at its neighbors: we may have a shorter path to them, via v

- Update tentative distances of neighbors accordingly

6

Dijkstra’s algorithm

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take the unvisited node v with the shortest tentative distance

- Its tentative distance is now fixed

- Look at its neighbors: we may have a shorter path to them, via v

- Update tentative distances of neighbors accordingly

7

O(log n) with
proper data structure

(min heap)

O(n) iterations

Towards parallel shortest path

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take some set of nodes

- Their tentative distances are now fixed

- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly

8

Towards parallel shortest path

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take some set of nodes

- Their tentative distances are now fixed

- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly

9

Work may be redundant:
Later iterations may need to look at
this node again.

Trade-off between parallelization
and work overhead

Towards parallel shortest path

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take some set of nodes

- Their tentative distances are now fixed

- Look at their neighbors: we may have a shorter path to them

- Update tentative distances of neighbors accordingly

10

What set?

Only the first unvisited node:
Dijkstra’s algorithm

All nodes:
Bellman-Ford

Δ-stepping

• Delta-stepping is a parallelisable single-source shortest path algorithm

- Algorithm stores an array of buckets B

- Nodes are grouped by tentative distance in buckets

- The range of distances in a bucket is parameter Δ (Greek letter Delta)

- Bucket B[i] stores the set of unsettled nodes v with
 i ⋅ Δ ≤ tent(v) < (i + 1) ⋅ Δ

11https://www.sciencedirect.com/science/article/pii/S0196677403000762

https://www.sciencedirect.com/science/article/pii/S0196677403000762

Towards parallel shortest path

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take all nodes from the first non-empty bucket

- Their tentative distances are now fixed

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly

12

Towards parallel shortest path

• Keep track of tentative distance per vertex

- The distance of the shortest known path

• Repeatedly,

- Take all nodes from the first non-empty bucket

- Their tentative distances are now fixed

- Find requests: In parallel, look at their neighbors: we may have a
shorter path to them

- Relax requests: In parallel, update tentative distances of neighbors
accordingly

12

This could add some of the
same nodes back into the same
bucket, or new nodes into this
bucket.

Light and heavy edges

• A node may repeatedly be in the same bucket.

• This gives redundant work: we repeatedly look at its neighbors.

• To reduce this, we handle light and heavy edges separately.

- Light edges (c(e) ≤ Δ) may cause that nodes are added back to the same bucket.

- Heavy edges (c(e) > Δ) can only affect later buckets.

13

Towards parallel shortest path

• Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes B[i]:

• Remove all nodes from B[i]

• Find requests of light edges

• Relax requests

• Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:

• Find requests of light edges

• Relax requests
14

Towards parallel shortest path

• Repeatedly,

- Find index i of the first non-empty bucket.

- Repeatedly handle all outgoing light edges from nodes B[i]:

• Remove all nodes from B[i]

• Find requests of light edges

• Relax requests

• Keep track of all nodes that have been in this bucket

- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:

• Find requests of light edges

• Relax requests
14

This could add some of the same nodes
back into the same bucket, or new nodes
into this bucket.

Initialisation

• All vertices have infinite tentative distance, except s which has distance zero

• All buckets are empty, except B[0] which contains s

• How many buckets do we need?

- Depends on the longest path

- Or, on the longest edge: many buckets will be empty.

• with a cyclic buffer we can reuse the buckets we no longer need.

15

Basic algorithm

16

U. Meyer, P. Sanders / Journal of Algorithms 49 (2003) 114–152 123

2. The basic algorithm

Our sequential ∆-stepping algorithm shown in Fig. 1 resembles the “approximate
bucket implementation of Dijkstra’s algorithm” [17]. It maintain a one-dimensional array
B of buckets such that B[i] stores the set {v ∈ V : v is queued and tent(v) ∈ [i · ∆, (i +
1) · ∆)}. The parameter ∆ is a positive real number that is also called the “step width” or
“bucket width.” For maximum shortest path weight L, the array B must contain ⌈L/∆⌉
buckets. However, by cyclically reusing empty buckets, already b =maxe∈E⌈c(e)/∆⌉ + 1
buckets are sufficient. In that case B[i] is in charge of all tentative distances in [(j · b + i) ·
∆, (j · b + i + 1) · ∆) for all j ! 0.
In each phase, i.e., each iteration of the inner while-loop, the algorithm removes

all nodes from the first nonempty bucket (current bucket) and relaxes all light edges
(c(e) " ∆) out of these nodes. This may result in new nodes entering the current bucket
which are deleted in the next phase. Furthermore, nodes previously deleted from this bucket
may be reinserted if their tentative distance has been improved by the previous phase. The
relaxation of heavy edges (c(e) > ∆) is not needed at this time since they can only result
in tentative distances outside of the scope of the current bucket, i.e., they will not insert
nodes into the current bucket.
Once the current bucket finally remains empty after a phase, all nodes in its distance

range have been assigned their final distance values during the previous phase(s).

foreach v ∈ V do tent(v) := ∞
relax(s , 0); (* Insert source node with distance 0 *)
while ¬isEmpty(B) do (* A phase: Some queued nodes left (a) *)

i :=min{j ! 0: B[j] ̸= ∅} (* Smallest nonempty bucket (b) *)
R := ∅ (* No nodes deleted for bucket B[i] yet *)
while B[i] ̸= ∅ do (* New phase (c) *)

Req := findRequests(B[i], light) (* Create requests for light edges (d) *)
R := R ∪ B[i] (* Remember deleted nodes (e) *)
B[i] := ∅ (* Current bucket empty *)
relaxRequests(Req) (* Do relaxations, nodes may (re)enter B[i] (f) *)

Req := findRequests(R, heavy) (* Create requests for heavy edges (g) *)
relaxRequests(Req) (* Relaxations will not refill B[i] (h) *)

Function findRequests(V ′, kind : {light,heavy}) : set of Request
return {(w, tent(v) + c(v,w)): v ∈ V ′ ∧ (v,w) ∈ Ekind)}

Procedure relaxRequests(Req)
foreach (w,x) ∈Req do relax(w, x)

Procedure relax(w, x) (* Insert or move w in B if x < tent(w) *)
if x < tent(w) then

B[⌊tent(w)/∆⌋] := B[⌊tent(w)/∆⌋] \ {w} (* If in, remove from old bucket *)
B[⌊x /∆⌋] := B[⌊x /∆⌋] ∪{w} (* Insert into new bucket *)
tent(w) := x

Fig. 1. A sequential variant of ∆-stepping (with cyclical bucket reusage). The sets of light and heavy edges are
denoted by Elight and Eheavy, respectively. Requests consist of a tuple (node, weight).

Example
On blackboard

17

Utilities

18

fgl

• Inductive representation for graph structures

- Data.Graph.Inductive.Graph contains functions for querying the given graph

• Number of nodes / vertices in the graph

• Return the in / out edges for the given node

19https://hackage.haskell.org/package/fgl

https://hackage.haskell.org/package/fgl-5.8.0.0/docs/Data-Graph-Inductive-Graph.html
https://hackage.haskell.org/package/fgl

containers

• Assorted immutable data structures

- [Int]Map (dictionary), [Int]Set, etc.

- Put in an IORef/MVar/etc. to create a simple (non-concurrent) mutable container

20https://hackage.haskell.org/package/containers

https://hackage.haskell.org/package/containers

MVar (Map Int Float)

21

1: 5.0
2: 7.8
3: 3.5MVar

MVar (Map Int Float)

21

1: 5.0
2: 7.8
3: 3.5MVar

MVar (Map Int Float)

21

1: 5.0
2: 7.8
3: 3.5

1: 2.0
2: 7.8
3: 3.5

MVar

MVar (Map Int Float)

21

1: 5.0
2: 7.8
3: 3.5

1: 2.0
2: 7.8
3: 3.5

MVar

Map Int (MVar Float)

22

1:

2:

3:

5.0

7.8

3.5

MVar

MVar

MVar

Map Int (MVar Float)

22

1:

2:

3:

5.0

7.8

3.5

MVar

MVar

MVar

Map Int (MVar Float)

22

1:

2:

3:

5.0

7.8

3.5

2.0
MVar

MVar

MVar

Map Int (MVar Float)

22

1:

2:

3:

5.0

7.8

3.5

2.0
MVar

MVar

MVar

Lists vs Vectors

• Lists in Haskell are linked-lists:

- (:) and tail are O(1),

- Indexing is O(n)

• Vectors are stored as arrays, with
pointers to the values:

• Unboxed vectors store values
instead of pointers in arrays:

23

⋅ : ⋅

5.0

⋅ : ⋅ ⋅ : ⋅

7.8 3.5

⋅ | ⋅ | ⋅

5.0 7.8 3.5

5.0 | 7.8 | 3.5

vector

• (Un)boxed (im)mutable int-indexed arrays

- Provides arrays in several flavours (i.e. underlying representation), but all with the same API

- Data.Vector[.Mutable]

• Boxed vectors (i.e. array of pointers) that can hold any structure

- Data.Vector.Storable[.Mutable]

• Unboxed vectors (i.e. array of values) that can hold only Storable (i.e. primitive) values

• You can get a pointer directly to the array elements: useful for low-level atomic instructions

- You can convert between different representations

24https://hackage.haskell.org/package/vector

https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Mutable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable-Mutable.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Foreign-Storable.html
https://hackage.haskell.org/package/vector

Conclusion

• The long, sequential, critical path was a problem.

• Trade-off between work overhead and parallelism:

- We do some redundant work,

- but when done properly, we will get a faster algorithm!

• Separation in light and heavy edges reduces work overhead.

• It is up to you to determine where the parallelism in the algorithm is (easy) and how to exploit this (hard)

• You are free to use IORefs, MVars, STM, mutable vectors, …

25

Note about P1

• If you didn’t add your name and student number to the repository, 
 
then post a comment with them in the feedback pull request.

26

27Photo by James Barker

tot ziens

https://unsplash.com/@barkernotbaker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

