

B3CC: Concurrency

06: Delta-stepping

Ivo Gabe de Wolff

Announcement

- The second practical assignment has been released
 - https://ics.uu.nl/docs/vakken/b3cc/assessment.html
 - You may work in pairs, if you wish
 - Deadline: 22-12-2023 @ 23:59

Parallel algorithms

- You have seen many sequential algorithms
 - In "datastructuren"
- Can we convert a sequential algorithm to a parallel algorithm?
 - No automatic approach
 - Sequential code typically has a long, sequential, critical path
- Today: Converting Dijkstra's shortest-path algorithm to Delta-stepping

SSSP

- A central problem in algorithmic graph theory is the single-source shortest path problem
 - e.g. starting at vertex A, what is the shortest path to reach vertex F?
 - Many practical and theoretical applications
 - One of the benchmarks used in the Graph500 supercomputer ranking
 - The smallest problem size uses 226 vertices, requiring 17 GB RAM

SSSP

• Given...

- A directed graph G(V, E) with n = |V| nodes (or vertices) and m = |E| edges
- A distinguished node in the graph s: the "source"
- A function c that returns the (non-negative) weight of a given edge in G

Objective:

- For each node v reachable from s, compute the weight of the minimum-weight (i.e. shortest) path from s to v
- The weight of the path is the sum of the weights of its edges, denoted dist(s,v) or dist(v)
- If v is not reachable from s, then $dist(s,v) := \infty$

Dijkstra's algorithm

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- · Repeatedly,
 - Take the unvisited node v with the shortest tentative distance
 - Its tentative distance is now fixed
 - Look at its neighbors: we may have a shorter path to them, via ν
 - Update tentative distances of neighbors accordingly

Dijkstra's algorithm

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take the unvisited node v with the shortest tentative distance
 - Its tentative distance is now fixed
 - Look at its neighbors: we may have a shorter path to them, via \boldsymbol{v}
 - Update tentative distances of neighbors accordingly

O(n) iterations

O(log n) with proper data structure (min heap)

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

Work may be redundant: Later iterations may need to look at this node again.

Trade-off between parallelization and work overhead

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

What set?

Only the first unvisited node: Dijkstra's algorithm

All nodes: Bellman-Ford

Δ-stepping

- Delta-stepping is a parallelisable single-source shortest path algorithm
 - Algorithm stores an array of buckets ${\cal B}$
 - Nodes are grouped by tentative distance in buckets
 - The range of distances in a bucket is parameter Δ (Greek letter Delta)
 - Bucket B[i] stores the set of unsettled nodes v with $i \cdot \Delta \leq \text{tent}(v) < (i+1) \cdot \Delta$

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take all nodes from the first non-empty bucket
 - Their tentative distances are now fixed
 - Find requests: In parallel, look at their neighbors: we may have a shorter path to them
 - Relax requests: In parallel, update tentative distances of neighbors accordingly

- Keep track of tentative distance per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take all nodes from the first non-empty bucket
 - Their tentative distances are now fixed
 - Find requests: In parallel, look at their neighbors: we may have a shorter path to them
 - Relax requests: In parallel, update tentative distances of neighbors accordingly

This could add some of the same nodes back into the same bucket, or new nodes into this bucket.

Light and heavy edges

- A node may repeatedly be in the same bucket.
- This gives redundant work: we repeatedly look at its neighbors.
- To reduce this, we handle light and heavy edges separately.
 - Light edges $(c(e) \le \Delta)$ may cause that nodes are added back to the same bucket.
 - Heavy edges $(c(e) > \Delta)$ can only affect later buckets.

- Repeatedly,
 - Find index *i* of the first non-empty bucket.
 - Repeatedly handle all outgoing light edges from nodes B[i]:
 - Remove all nodes from B[i]
 - Find requests of light edges
 - Relax requests
 - Keep track of all nodes that have been in this bucket
 - When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:
 - Find requests of light edges
 - Relax requests

- Repeatedly,
 - Find index *i* of the first non-empty bucket.
 - Repeatedly handle all outgoing light edges from nodes B[i]:
 - Remove all nodes from B[i]
 - Find requests of light edges
 - Relax requests

This could add some of the same nodes back into the same bucket, or new nodes into this bucket.

- Keep track of all nodes that have been in this bucket
- When the bucket remains empty, handle all outgoing heavy edges of nodes that have been in B[i]:
 - Find requests of light edges
 - Relax requests

Initialisation

- All vertices have infinite tentative distance, except s which has distance zero
- All buckets are empty, except B[0] which contains s

- How many buckets do we need?
 - Depends on the longest path
 - Or, on the longest edge: many buckets will be empty.
 - with a cyclic buffer we can reuse the buckets we no longer need.

Basic algorithm

```
foreach v \in V do tent(v) := \infty
relax(s, 0);
                                                                             (* Insert source node with distance 0
                                                                             (* A phase: Some queued nodes left (a) *)
while ¬isEmpty(B) do
                                                                                     (* Smallest nonempty bucket (b) *)
    i := \min\{j \geqslant 0: B[j] \neq \emptyset\}
    R := \emptyset
                                                                          (* No nodes deleted for bucket B[i] yet
    while B[i] \neq \emptyset do
                                                                                                      (* New phase (c) *)
                                                                                 (* Create requests for light edges (d) *)
        Req := findRequests(B[i], light)
                                                                                      (* Remember deleted nodes (e) *)
        R := R \cup B[i]
        B[i] := \emptyset
                                                                                           (* Current bucket empty
                                                                     (* Do relaxations, nodes may (re)enter B[i] (f) *)
        relaxRequests(Req)
    Req := findRequests(R, heavy)
                                                                               (* Create requests for heavy edges (g) *)
                                                                                (* Relaxations will not refill B[i] (h) *)
    relaxRequests(Req)
Function findRequests(V', kind : {light, heavy}) : set of Request
    return \{(w, \text{tent}(v) + c(v, w)): v \in V' \land (v, w) \in E_{kind})\}
Procedure relaxRequests(Req)
    foreach (w, x) \in \text{Req do relax}(w, x)
Procedure relax(w, x)
                                                                             (* Insert or move w in B if x < tent(w) *)
    if x < tent(w) then
        B[[tent(w)/\Delta]] := B[[tent(w)/\Delta]] \setminus \{w\}
                                                                                      (* If in, remove from old bucket *)
                                                                                             (* Insert into new bucket *)
                 /\Delta \rfloor] := B[\lfloor x /\Delta \rfloor] \cup \{w\}
        B[\lfloor x \rfloor]
        tent(w) := x
```

Example

On blackboard

Utilities

fgl

- Inductive representation for graph structures
 - Data.Graph.Inductive.Graph contains functions for querying the given graph
 - Number of nodes / vertices in the graph
 - Return the in / out edges for the given node

containers

- Assorted immutable data structures
 - [Int]Map (dictionary), [Int]Set, etc.
 - Put in an IORef/MVar/etc. to create a simple (non-concurrent) mutable container

1: 5.0

2: 7.8

3: 3.5

1: 5.0

2: 7.8

3: 3.5

1: 2.0

2: 7.8

3: 3.5

Lists vs Vectors

- Lists in Haskell are linked-lists:
 - (:) and tail are O(1),
 - Indexing is O(n)

 Vectors are stored as arrays, with pointers to the values:

 Unboxed vectors store values instead of pointers in arrays:

vector

- (Un)boxed (im)mutable int-indexed arrays
 - Provides arrays in several flavours (i.e. underlying representation), but all with the same API
 - Data.Vector[.Mutable]
 - Boxed vectors (i.e. array of pointers) that can hold any structure
 - Data. Vector. Storable [. Mutable]
 - Unboxed vectors (i.e. array of values) that can hold only Storable (i.e. primitive) values
 - You can get a pointer directly to the array elements: useful for low-level atomic instructions
 - You can convert between different representations

Conclusion

- The long, sequential, critical path was a problem.
- Trade-off between work overhead and parallelism:
 - We do some redundant work,
 - but when done properly, we will get a faster algorithm!
- Separation in light and heavy edges reduces work overhead.
- It is up to you to determine where the parallelism in the algorithm is (easy) and how to exploit this (hard)
- You are free to use IORefs, MVars, STM, mutable vectors, ...

Note about P1

If you didn't add your name and student number to the repository,

then post a comment with them in the feedback pull request.

