B3CC: Concurrency

07: Delta-stepping

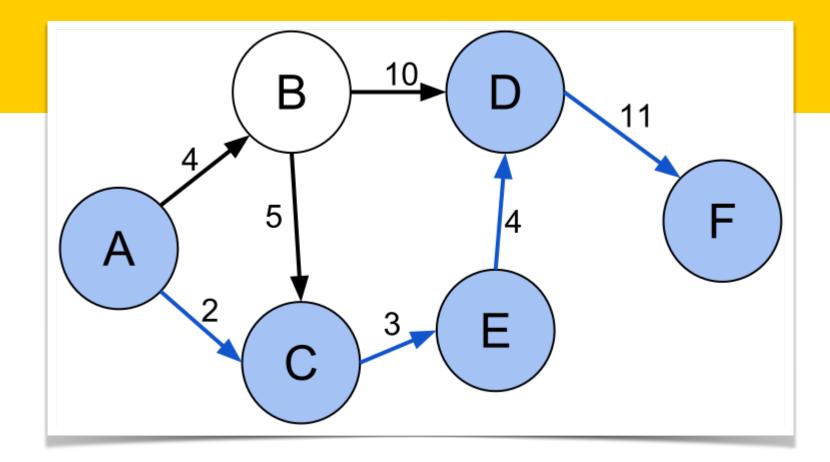
Ivo Gabe de Wolff

- The second practical assignment has been released
 - <u>https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html</u>
 - You may work in pairs, if you wish
 - Deadline: 20-12-2023 @ 23:59

- You have seen many sequential algorithms
 - In "datastructuren"
- Can we convert a sequential algorithm to a parallel algorithm?
 - No automatic approach
 - Sequential code typically has a long, sequential, critical path
- Today: Converting Dijkstra's shortest-path algorithm to Delta-stepping

- A central problem in algorithmic graph theory is the single-source shortest path problem
 - e.g. starting at vertex A, what is the shortest path to reach vertex F?
 - Many practical and theoretical applications
 - One of the benchmarks used in the Graph500 supercomputer ranking
 - The smallest problem size uses 2²⁶ vertices, requiring 17 GB RAM

https://en.wikipedia.org/wiki/Shortest_path_problem



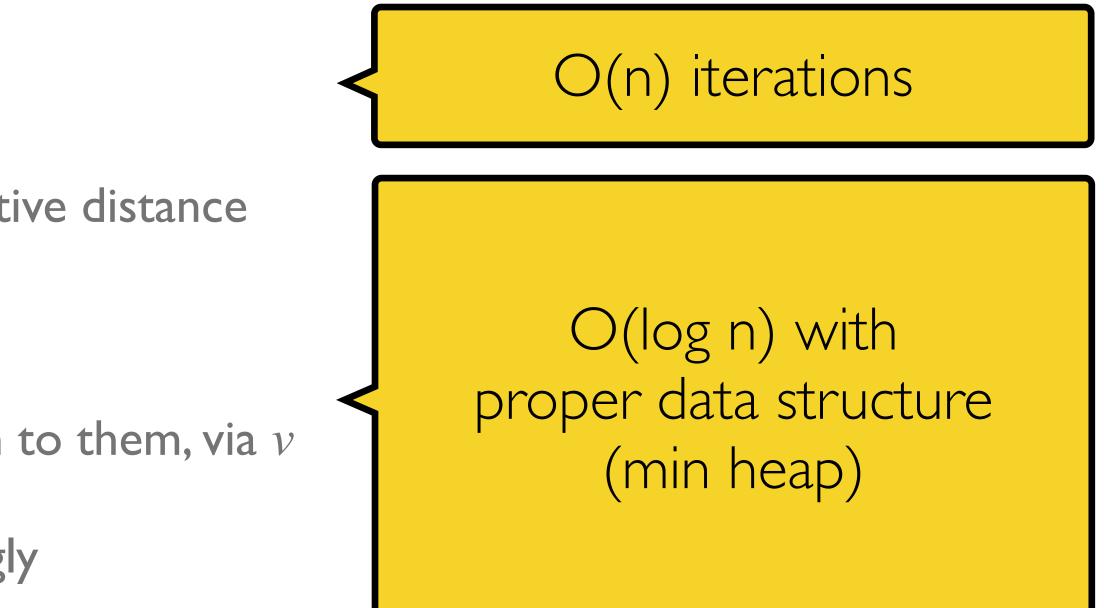
- Given...
 - A directed graph G(V, E) with n = |V| nodes (or vertices) and m = |E| edges
 - A distinguished node in the graph s: the "source"
 - A function c that returns the (non-negative) weight of a given edge in G
- Objective:
 - For each node v reachable from s, compute the weight of the minimum-weight (i.e. shortest) path from s to v
 - The weight of the path is the sum of the weights of its edges, denoted dist(s,v) or dist(v)
 - If v is not reachable from s, then $dist(s,v) \coloneqq \infty$

Dijkstra's algorithm

- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take the unvisited node v with the shortest tentative distance
 - Its tentative distance is now fixed
 - Look at its neighbors: we may have a shorter path to them, via v
 - Update tentative distances of neighbors accordingly

Dijkstra's algorithm

- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take the unvisited node v with the shortest tentative distance
 - Its tentative distance is now fixed
 - Look at its neighbors: we may have a shorter path to them, via v
 - Update tentative distances of neighbors accordingly



- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

Work may be redundant: Later iterations may need to look at this node again.

Trade-off between parallelization and work overhead

- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take some set of nodes
 - Their tentative distances are now fixed
 - Look at their neighbors: we may have a shorter path to them
 - Update tentative distances of neighbors accordingly

What set?

Only the first unvisited node: Dijkstra's algorithm

All nodes: Bellman-Ford

- *Delta-stepping* is a parallelisable single-source shortest path algorithm
 - Algorithm stores an array of buckets B
 - Nodes are grouped by tentative distance in buckets
 - The range of distances in a bucket is parameter Δ (Greek letter Delta)
 - Bucket B[i] stores the set of unsettled nodes v with $i \cdot \Delta \leq \operatorname{tent}(v) < (i+1) \cdot \Delta$

Towards parallel shortest path

- Keep track of *tentative distance* per vertex
 - The distance of the shortest known path
- Repeatedly,
 - Take all nodes from the first non-empty bucket
 - Their tentative distances are now fixed
 - Find requests: In parallel, look at their neighbors: we may have a shorter path to them
 - Relax requests: In parallel, update tentative distances of neighbors accordingly

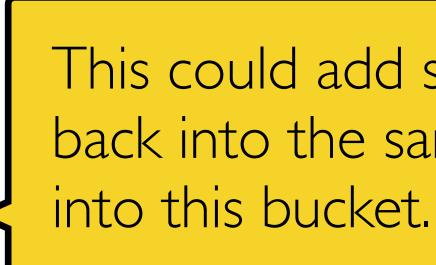
This could add some of the same nodes back into the same bucket, or new nodes into this bucket.

Light and heavy edges

- A node may repeatedly be in the same bucket.
- This gives redundant work: we repeatedly look at its neighbors.
- To reduce this, we handle *light* and *heavy* edges separately.
 - Light edges ($c(e) \leq \Delta$) may cause that nodes are added back to the same bucket.
 - Heavy edges ($c(e) > \Delta$) can only affect later buckets.

Towards parallel shortest path

- Repeatedly,
 - Find index *i* of the first non-empty bucket.
 - Repeatedly handle all outgoing <u>light edges</u> from nodes B[i]:
 - Remove all nodes from B[i]
 - Find requests of light edges
 - Relax requests



- Keep track of all nodes that have been in this bucket
- When the bucket remains empty, handle all outgoing <u>heavy edges</u> of nodes that have been in B[i]:
 - Find requests of light edges
 - Relax requests

This could add some of the same nodes back into the same bucket, or new nodes

- All vertices have infinite tentative distance, except *s* which has distance zero
- All buckets are empty, except B[0] which contains s

Basic algorithm

```
foreach v \in V do tent(v) := \infty
relax(s, 0);
while ¬isEmpty(B) do
    i := \min\{j \ge 0: B[j] \neq \emptyset\}
    R := \emptyset
    while B[i] \neq \emptyset do
        Req := findRequests(B[i], light)
        R := R \cup B[i]
        B[i] := \emptyset
        relaxRequests(Req)
    Req := findRequests(R, heavy)
    relaxRequests(Req)
```

Function findRequests(V', kind : {light, heavy}) : set of Request **return** {(w, tent(v) + c(v, w)): $v \in V' \land (v, w) \in E_{\text{kind}}$ }

Procedure relaxRequests(Req) foreach $(w, x) \in \text{Req do relax}(w, x)$

Procedure relax(w, x)if x < tent(w) then $B[[\operatorname{tent}(w)/\Delta]] := B[[\operatorname{tent}(w)/\Delta]] \setminus \{w\}$ $/\Delta \rfloor] := B[\lfloor x \qquad /\Delta \rfloor] \cup \{w\}$ $B[\lfloor x$ tent(w) := x

- (* Insert source node with distance 0 *)
- (* A phase: Some queued nodes left (a) *)
 - (* Smallest nonempty bucket (b) *)
- (* No nodes deleted for bucket B[i] yet *)
 - (* New phase (c) *)
 - (* Create requests for light edges (d) *)
 - (* Remember deleted nodes (e) *)
 - (* Current bucket empty *)
- (* Do relaxations, nodes may (re)enter B[i] (f) *)
 - (* Create requests for heavy edges (g) *)
 - (* Relaxations will not refill *B*[*i*] (h) *)

(* Insert or move w in B if x < tent(w) *)

(* If in, remove from old bucket *) (* Insert into new bucket *)

On the blackboard

Example

Number of buckets

- How many buckets do we need?
 - Depends on the longest path (which we don't know yet)
 - If we use a cyclic or circular buffer, depends on the longest edge.
 - with a cyclic buffer we can reuse the buckets we no longer need.

Cyclic array of buckets

- Cyclic array (or circular buffer, ring buffer)
 - Only a small number of buckets are in use (not empty) at a time:
 - When we work with bucket *i*, we don't need index *i* + length yet.
 - and we don't need *i* 1 any more.
 - Reuse index *i* for value *i* + length, (and later *i* + 2 * length, ...)
 - *i*th value is stored at index *i* % length

Utilities

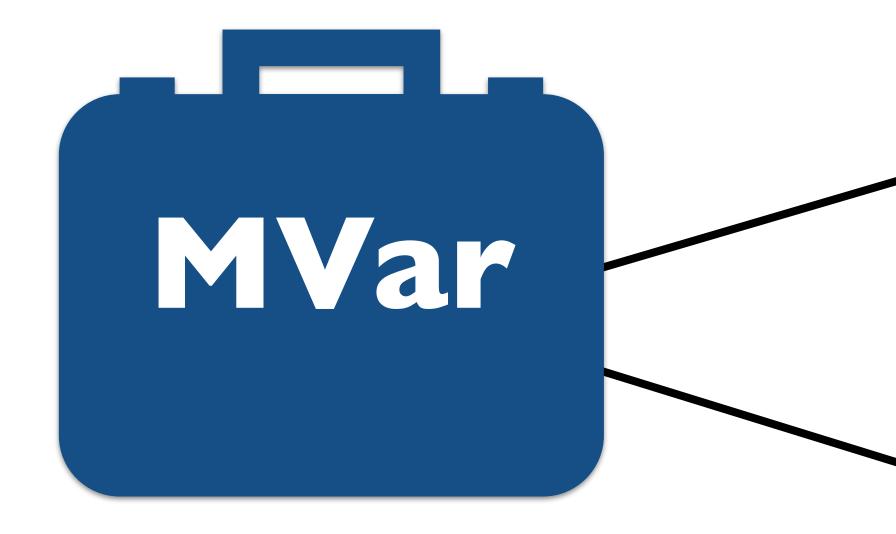
- Inductive representation for graph structures
 - <u>Data.Graph.Inductive.Graph</u> contains functions for querying the given graph
 - Number of nodes / vertices in the graph
 - Return the in / out edges for the given node

https://hackage.haskell.org/package/fgl

- Assorted immutable data structures
 - [Int]Map (dictionary), [Int]Set, etc.
 - Put in an IORef/MVar/etc. to create a simple (non-concurrent) mutable container

https://hackage.haskell.org/package/containers

MVar (IntMap Float)

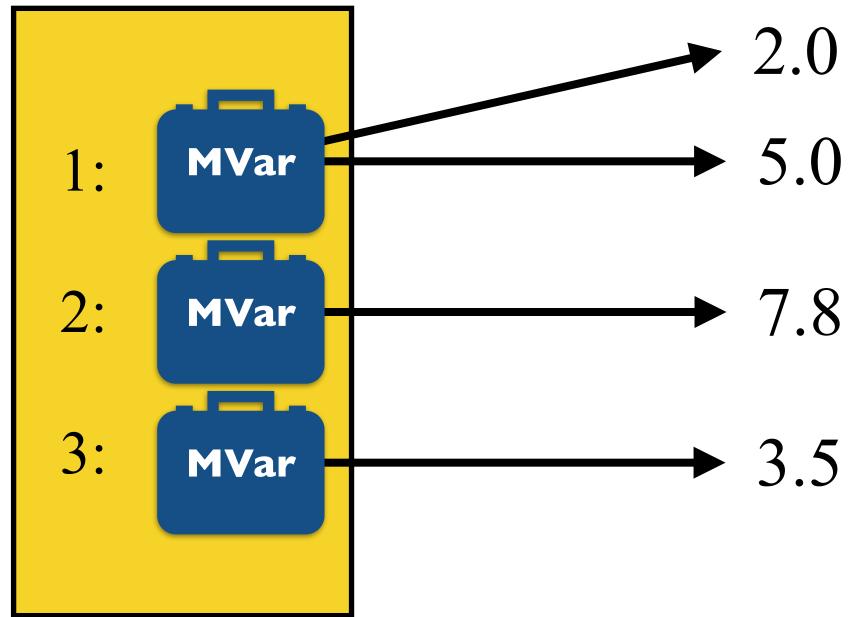


1:5.0 2:7.8 3: 3.5 1:2.0

2:7.8

3: 3.5

IntMap (MVar Float)

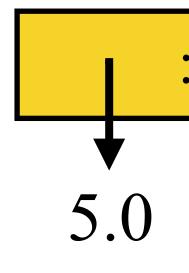


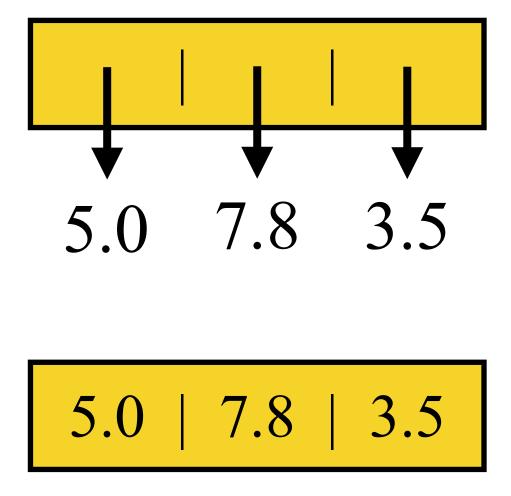
Lists vs Vectors

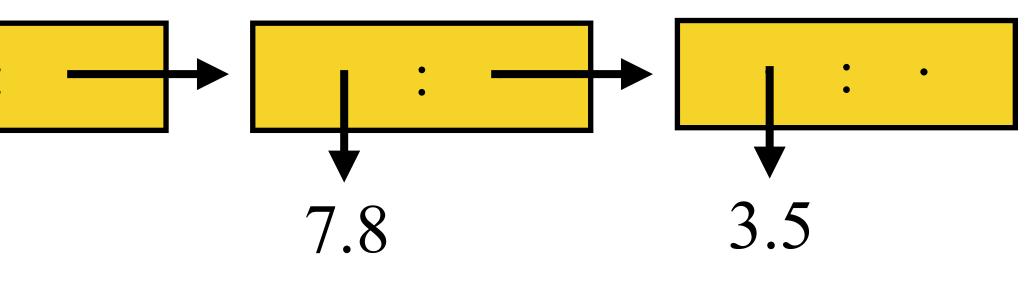
- Lists in Haskell are linked-lists:
 - (:) and tail are O(1),
 - Indexing is O(n)

 Vectors are stored as arrays, with pointers to the values:

 Unboxed vectors store values instead of pointers in arrays:







- (Un)boxed (im)mutable int-indexed arrays
 - Provides arrays in several flavours (i.e. underlying representation), but all with the same API
 - <u>Data.Vector[.Mutable]</u>
 - Boxed vectors (i.e. array of pointers) that can hold any structure
 - <u>Data.Vector.Storable[.Mutable]</u>
 - Unboxed vectors (i.e. array of values) that can hold only <u>Storable</u> (i.e. primitive) values
 - You can get a pointer directly to the array elements: useful for low-level atomic instructions
 - You can convert between different representations

- Provides the functionality of atomicModifyIORef on vectors
- For boxed vectors:

atomicModifyIOVector

- :: V.IOVector $a \rightarrow Int \rightarrow (a \rightarrow (a, b)) \rightarrow IO b$
- For unboxed vectors:

atomicModifyIOVectorFloat

:: M.IOVector Float \rightarrow Int \rightarrow (Float \rightarrow (Float, b)) \rightarrow IO b

- The long, sequential, critical path was a problem.
- Trade-off between work overhead and parallelism:
 - We do some redundant work,
 - but when done properly, we will get a faster algorithm!
- Separation in light and heavy edges reduces work overhead.
- You are free to use IORefs, MVars, STM, mutable vectors, ...

• It is up to you to determine where the parallelism in the algorithm is (easy) and how to exploit this (hard)

