
B3CC: Concurrency
08: Software Transactional Memory (2)

Tom Smeding

Recap

• An approach to implementing atomic blocks

- Effects become visible to other threads all at once

- Actions within an atomically :: STM a -> IO a block are executed isolated from all other threads

- Execute optimistically: roll-back changes and retry when a conflict is detected

- Offers composable blocking and atomicity

�2

Recap

�3

import Control.Concurrent.STM

data STM a
instance Monad STM

atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

(and a few more, but we won’t discuss those here)

Correction

• About the progress property of STM

�4

STM as a building block (II)

Concurrent Map

�5

Key-value map

• The goal:

- A key-value map that can be accessed concurrently by multiple threads

- Basic interface:

�6

data CMap k v

insert :: Ord k => k -> v -> CMap k v -> CMap k v
lookup :: Ord k => k -> CMap k v -> Maybe v

Option #1

• A regular (pure) key-value map in a mutable box

- Simple, safe

- No concurrency!

�7

import Control.Concurrent.MVar
import qualified Data.Map as M

data CMap k v = CMap (MVar (M.Map k v))

insert :: Ord k => k -> v -> CMap k v -> IO ()
lookup :: Ord k => k -> CMap k v -> IO (Maybe v)

Option #2

• A pure map in a box, but this time using STM

- Safe concurrent lookup

- Insertion updates the entire tree (all other threads must retry)

�8

import Control.Concurrent.STM
import qualified Data.Map as M

data CMap k v = CMap (TVar (M.Map k v))

insert :: Ord k => k -> v -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)

Option #3

• A pure map with mutable values

- Allows values to be read and adjusted (mutated) concurrently

- Fixed key set

�9

import Control.Concurrent.STM
import qualified Data.Map as M

data CMap k v = CMap (M.Map k (TVar v))

adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)

Option #4

• Implement the data structure ourselves

- Goal: Fully concurrent insertion and lookup

- Updates to disjoint parts of the tree do not conflict with each other

�10

data CMap k v = CMap (TVar (Node k v))
data Node k v
 = Bin k (TVar v) (CMap k v) (CMap k v)
 | Tip

insert :: Ord k => k -> v -> CMap k v -> STM ()
lookup :: Ord k => k -> CMap k v -> STM (Maybe v)
adjust :: Ord k => (v -> v) -> k -> CMap k v -> STM ()

Option #4

• Lookup a value in the map

- Standard recursive traversal

- Try to implement insert!

• Minimise the number of writeTVar!

�11

lookup :: Ord k => k -> CMap k v -> STM (Maybe v)
lookup key (CMap ref) = readTVar ref >>= go
 where
 go Tip = return Nothing
 go (Bin k v l r) =
 case compare key k of
 LT -> lookup key l
 GT -> lookup key r
 EQ -> Just <$> readTVar v

data CMap k v = CMap (TVar (Node k v))
data Node k v
 = Bin k (TVar v) (CMap k v) (CMap k v)
 | Tip

Summary

�12

What can we not do with STM?

• STM offers composable blocking and atomicity

- Concurrent programming without locks!

• But, there are also things that it can not do compared to using locks

- Fairness: all blocked threads are woken up when a TVar changes

- No progress guarantee

- Threads can not communicate that they are blocking

�13

Performance considerations

• atomically works by accumulating a log of writeTVar and readTVar operations; this has consequences:

- Discarding the effects of the transaction is easy: delete the log

- Each readTVar must traverse the log to see if it was written by an earlier writeTVar: O(n)

- A transaction that called retry is woken up whenever one of the TVars in its read set changes: O(n)

- A long running transaction can re-execute indefinitely because it is repeatedly aborted by shorter transactions:
starvation

• Most abstractions have a runtime cost…

�14

IORefs as a building block (II)

Lockfree concurrent queue

�15

Unbounded queue

• The goal:

- As before, but implement a lock-free queue

- Creating a new empty queue is similar to before, but both ends point to Cons cell as a sentinel value

�16This is the Michael–Scott queue: https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

data Queue a =
 Queue (IORef (List a))
 (IORef (List a))

data List a = Null
 | Cons a (IORef (List a))

https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

enqueue

• To add an element to the queue

1. Create the new cell holding the value, with next pointing to Null

2. Keep trying until done:

1. Read the tail from the queue

2. Read the next node from the tail

3. Does the next node point to Null?

• The tail pointed to the last node: try to link our node at the end of the queue (CAS); otherwise

• Somebody else beat us extending the tail; help out by trying to swing the tail to the next node (CAS)

3. Try to swing the tail to the inserted node; this might fail but that is okay (CAS)

�17

data Queue a =
 Queue (IORef (List a))
 (IORef (List a))

data List a = Null
 | Cons a (IORef (List a))

dequeue

• To remove an element from the queue

1. Read the head and tail pointers

2. Are head and tail equal?

• Empty, or outdated tail?  
Read head.next; if Cons, advance tail (CAS) and try again. If Null, queue is empty.

3. Read head.next.value

4. Advance head (CAS); if this fails, another thread has already claimed this node, so try again

�18

data Queue a =
 Queue (IORef (List a))
 (IORef (List a))

data List a = Null
 | Cons a (IORef (List a))

Photo by Simon Oliehoek

tot ziens

Extra slides

• The Next Mainstream Programming Language: A Game Developer’s Perspective (2005)

- https://groups.csail.mit.edu/cag/crg/papers/sweeney06games.pdf

• Beyond Functional Programming: The Verse Programming Language (2022)

- https://simon.peytonjones.org/assets/pdfs/haskell-exchange-22.pdf

�20

https://groups.csail.mit.edu/cag/crg/papers/sweeney06games.pdf
https://simon.peytonjones.org/assets/pdfs/haskell-exchange-22.pdf

