W
= ¥ = Utrecht University

NS

B3CC: Concurrency
08: Parallelism

Tom Smeding

 Midterm exam

- Tuesday December 17th @ 13:30 — 15:30 (2h): Olympos hal 1

- "Minder massaal": BBG 0.20 @ 13:30 (only go here if you know you should be here)

» Concurrency: dealing with lots of things at once

- Collection of independently executing processes
- Two or more threads are making progress
 Parallelism: doing lots of things at once
- Simultaneous execution of (possibly related) computations

- At least two threads are executing simultaneously

« So far we have discussed concurrency as a means to write modular code with multiple interactions

- Example: network server that interacts with multiple clients simultaneously

* Sometimes this can speed up the program by overlapping the I/O or time spent waiting for clients to
respond, but this speedup doesn’t require multiple processors to achieve

* In many cases we can use the same method to achieve real parallelism
- We have used this as a way to test whether your programs can actually execute concurrently

- From now, we will talk about some of the considerations for doing this with intent

Parallelism

A (mostly) hardware perspective

Accelerators | GPU/DPU/SmartNIC/FPGA/...

NUMA: Non-uniform memory access

Out-of-order/

. . Hide latency
speculative execution

SMT | Increase IPC

https://en.wikichip.org/wiki/amd/ryzen 7/1800x; https://upload.wikimedia.org/wikipedia/commons/3/35/HP /820

motherboard.jpg

\

L —

.
2331 unam o o

IRy RE

https://en.wikichip.org/wiki/amd/ryzen_7/1800x
https://upload.wikimedia.org/wikipedia/commons/3/35/HP_Z820_motherboard.jpg

48 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance .
(SpecINT x 10%)

Frequency (MHz)

Typical Power
1 (Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

https://qithub.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

 Fetch instruction pointed to by PC in memory

— >—<

l iINstruction word

« Decode instruction into operator/operand

— >—<

l iINstruction word

loperands l operator

» Get operands from the register file

— >—<

l iINstruction word

loperands l operator

(reqgister file)

10

 Execute the instruction

— >—<

l iINstruction word

loperands l operator

(reqgister file)(scheduler)

'

11

» Write back result to the register file

— >—<

l iINstruction word

loperands l operator

—{ reqgister file)(scheduler)
| |
=

12

* Increment program counter
(oo) (e
l iINnstruction word

loperands l operator

—{ reqgister file)(scheduler)
| |

!
()

13

- Read and write memory from a computed address

l iINstruction word

loperands l operator

——{ reqgister file)(scheduler)
| |
R

14

» Instead of incrementing the PC, set it to a computed value

l iINstruction word

loperands l operator

(reqgister file)(scheduler)
| |
l

15

48 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance .
(SpecINT x 10%)

y Frequency (MHz)

Typical Power
1 (Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

https://qithub.com/karlrupp/microprocessor-trend-data

16

https://github.com/karlrupp/microprocessor-trend-data

Intel Core i7 Haswell

« Up to 192 instructions in-flight
» Up to 48 predicted branches ahead

- Up to 8 instructions/cycle issued
out-of-order

» About 25 pipeline stages at ~4GHz

- Question: how far does light travel during a clock cycle!?

- How large is a motherboard!?

https://www.realworldtech.com/haswell-cpu/

Branch . Instruction
Predictors Fetch Unit
Haswell [u ITLBI 32KB L1 I-Cache (8 way)]

168\1\

(

16B Predecode, Fetch Buffer

e/

6 Instructions\l\

2x20 Instruction Queue

e/

Complex] [Simple |[Simple][Simple
Decoder) |Decoder) |Decoder) |Decoder

-

(1 5K pop Cache (8 way)

1 pop\l\ 1 pop 1 pop

56 pop Decode Queue

J”

4 pops

32B

- pops\i\

"/

192 Entry Reorder Buffer (ROB)

¥ y

(
!

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer

1 ! l

l

60 Entry Unified Scheduler

il

Port O Port 1 Port 5

L

ALU 256-bit ALU ALU 256-bit
Branch ||| VMUL LEA Fast LEA VALU
Shift VShift MUL VShuffle

Port 6] Port 2 Port 3 |Port 4 |Port 7

i

A 4
256-bit) [256-bit) [256-bit) [256-bit
FMA FMA VALU FShuffle
FBlend FADD VBlend FBlend

A 4
ALU
Branch
Shift

17

https://www.realworldtech.com/haswell-cpu/

How to make a processor faster

* Instruction pipelining
- Independent instructions can follow each other
- Start instruction n+1 after instruction 7 finishes the first stage
« Superscalar execution
- Multiple execution units in parallel
- Scheduler issues multiple instructions in the same cycle
- Out of order execution
- Simultaneous multi-threading (SMT) (a.k.a. hyper threading)
- Scheduler issues multiple instructions in the same cycle, from different threads

* Do more per instruction

18

 Single-Instruction Multiple-Data (SIMD) is a kind of data parallelism

- Amortise the control overhead over the instruction width

- In contrast to the SIMT model of CUDA/OpenCL, the vector width is exposed directly to the programmer

19

» Brief history of x86 SIMD extensions

- MMX (Pentium): 8 x 8-bit integer operations

- SSE (Pentium 3): 4 x 32-bit floating-point operations

- SSE2 (Pentium 4): 2 x 64-bit operations

- SSE3, SSSE3, SSE4.1,SSE4.2 ...

- AVX (Sandy Bridge), AVX-2 (Haswell): 256-bit operations

- AVX-512 (KNL, Skylake): 512-bit operations

- AVX-VNNI (Cascade lake): Vector neural network instructions

 Available instructions depends on the target architecture!

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

20

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

* Neglecting SIMD is becoming more costly

- Sandy Bridge (2009): 8-way SIMD
- Skylake (2015): 16-way SIMD

- Centaur CNS (2019): 4096-way SIMD

21

- Example: SAXPY

- How to vectorise:

float saxpy(float alpha, float x, float y) {

return alpha*x + vy;

}

#tinclude <immintrin.h>

nl28 a
~ . ml28 b
~ _ml28 ¢
return c;

T
T

T

T
T

T

m128 saxpy4(float alpha, m128 xs, _ ml128 ys) {

_set_psi(alpha);

_mul_ps(a, XS) ;
_add_ps(b, ys);

22

« Example: dot product

- How to vectorise!

float dotp(float xs[4], float ys[4]) {
float r = 0;
for (int 1 = 0; 1 < 4; ++1) {
r += xs[i] = ys[i];
}

return r;

}

23

SIMD

« Example: dot product

- How to tell which one is better?

- Benchmark! This won't tell us why; tools such as LLVM MCA can help

float dotp_v1(__m128 xs, _ m128 ys) {

- m128 a = _mm_mul_ps(xs, ys); o
- . m128 b = _mm_hadd_ps(a, a); o
- m128 ¢ = _mm_hadd _ps(b, b); o
float d = mm _cvtss f32(c); o
d; __

} __
f1

https://stackoverflow.com/questions/6996 7 64/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction

ml28
ml28
ml28
ml28
ml28
ml28
ml28
oat

R R HEH 30O O QO QY

float dotp_v2(__m128 xs, _ m128 ys) {

_mm_mul_ps(xs, ys);
_mm_shuffle_ps(a, a, 0x55);
~mm_add ss(a,d);
_mm_unpackhi_ps(a, a);
_mm_shuffle_ps(a, a, Oxff);
~mm_add _ss(f, e);
_mm_add_ss(h, g);

_mm_cvtss f32(i);

24

https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction

» Array of structures

- Most logical data organisation layout

- Extremely difficult to access memory for reads (gather)
and writes (scatter)

- Prevents efficient vectorisation

- May lead to better cache utilisation if data is accessed randomly

struct Poilnt

{

float x,vy,z;

s

void dotp_aos(

Point pl
Point p2
float rs

) {
for (int 1
rs[i]

+ + |l

(128]
1128]

(128]

01 [

He He He ©

n1[1].

N < X -

n1[1].

25

 Structure of arrays

- Separate array for each field of the structure

- Keeps memory access contiguous when vectorisation
is performed over structure instances

- Typically better for vectorisation and to avoid false sharing

struct Points {

¥
void dotp_soa(
Points pl,
Points p2,
float rs[128]
) 4
for (int 1 = 0O;
rs[i] = pl.x
+ pl.yl
+ pl.z

1
1
1

1

* ¥ % A

float x[128], y[128], z[128];

128; ++1i) {
02 .x[1.
02 .y[1]

n2.z[1];

26

Parallelism

A software developer’s perspective

27

« Multiple kinds of code:

- Gameplay simulation

* Models the state of the game world as interacting entities

* Sound, networking, user input, etc.
- Numeric computation

* Physics, collision detection, path finding, scene graph traversal, etc.
- Rendering

* Pixel & vertex attributes; runs on the GPU

Sekiro: Shadows Die Twice, FromSoftware 28

What’s in a game?

 Parallel application design

- In practice large applications consist of

a mix of concurrency and parallelism
- Parts may be run concurrently, but there are also (data) dependencies

- Usually, individual tasks are not the same size

The Witness, Thekla

29

What’s in a game?

 Parallel application design

- In practice large applications consist of

a mix of concurrency and parallelism
- Parts may be run concurrently, but there are also (data) dependencies

- Usually, individual tasks are not the same size

The Witness, Thekla

30

 Task parallelism
- Problem is broken down into separate tasks
- Individual tasks are created and communicate/synchronise with each other

- Task decomposition dictates scalability

31

« Splits control flow into multiple forks which later rejoin

- Can be used to implement many other patterns

data Async a

do

<- compute_ A
<- async (compute B a)
<- async (compute C a)

<- walt b’
<- walt c'
<- compute D b c

32

- Many divide-and-conquer algorithms lend themselves to fork-
join parallelism

divide

- Sub-problems must be independent so that they can execute in

parallel
¢ base case

- Correct task granularity is vital

* Deep enough to expose enough parallelism combine

* Not so fine-grained that scheduling overheads dominate

33

P| P2 P3

- Data parallelism
- Problem is viewed as operations over parallel data
- The same operation is applied to subsets of the data

- Scales to the amount of data & number of processors

34

Considerations

35

 Improving application performance through parallelisation means:

- Reducing the total time to compute a single result (latency)
- Increasing the rate at which a series of results are computed (throughput)

- Reducing the power consumption of a computation

36

 To go faster: gain from parallelisation > overhead of adding it

- Granularity: If the tasks are too small: benefit from running them in parallel < task management overhead

- Data dependencies: When one task depends on another, they must be performed sequentially

37

» The computation should be distributed evenly across the processors

- Uneven distribution => maybe some processors complete their tasks before others and become idle
* The amount of work may not be known prior to execution

 Differences in processor speeds (e.g. noisy system, frequency boost...)

38

» Static load balancing can be viewed as a scheduling or bin packing problem

- Estimate the execution time for parts of the program and their interdependencies

- Generate a fixed number of equally sized tasks and distribute amongst the processors in some way (e.g. round
robin, recursive bisection, random...)

- Limitations:
e Accurate estimates of execution time are difficult

* Does not account for variable delays (e.g. memory access time) or number of tasks (e.g. search problems)

39

Load balancing

* In dynamic load balancing tasks are allocated to processors during execution
- In a centralised dynamic scheme one process holds all tasks to be computed
- Worker processes request new tasks from the work-pool

- Readily applicable to divide-and-conquer problems

Work pool

Tasks

Master
process

Send task %
Request task /

(and possibly . ‘
submit new tasks) Slave “worker” processes

40

» The performance improvement, or speedup of a parallel application, is:

- Where Tp is the time to execute using P threads/processors

Tl
speedup = Sp = —
TP
» The efficiency of the program is:
. S5p 1
efficiency = — =
P PT,

- Here, 1 can be:

- The parallel algorithm executed on one thread: relative speedup

- An equivalent serial algorithm: absolute speedup
41

» Several factors appear as overhead in parallel computations and limit the speedup of the program

- Periods when not all processors are performing useful work

- Extra computations in the parallel version not appearing in the sequential version (example: recompute
constants locally)

- Communication time between processes

42

Amdahl

» The execution time (1) of a program splits into:

- W, time spent doing (non-parallelisable) serial work

- W, time spent doing parallel work

%4
par
TP > Wser +
P
Wser . . .
 If f = W W IS the fraction of serial work to be performed, we get the parallel speedup:
Ser par
|
Sp <

A =HIP

* This is called Amdahl’s Law

43

Amdahl

» The speedup bound is determined by the degree of sequential execution in the program, not the number of
Processors

- Strong scaling (fixed-sized speedup): limp_,o Sp < 1/f

1 P=2 P-4 P-8

P -
Serial work l

Parallelizable work

1

oWll

44

» The serial fraction of the program limits the achievable speedup

. — —_ N
o0 (N @)} -

Speedup factor, S(p)

=N

f=0%

f=5%

f=10%
f=20%

4 8 12 16 20
Number of processors, p

45

Gustafson-Barsis

« Often the problem size can increase as the number of processes increases

- The proportion of the serial part decreases

- Weak scaling (scaled speedup): S I,D =f+ (1 —f)P

P -

P-1 2 -4 P-8

Serial work

Parallelizable work I

awll |

46

