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Announcement

• Midterm exam


- Tuesday December 19th @ 13:00 – 15:00 (2h): Olympos hal 2

- "Minder massaal": BBG 1.79 @ 13:30 (only go here if you know you should be here)
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Recap

• Concurrency: dealing with lots of things at once


- Collection of independently executing processes

- Two or more threads are making progress

• Parallelism: doing lots of things at once


- Simultaneous execution of (possibly related) computations

- At least two threads are executing simultaneously
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Recap

• So far we have discussed concurrency as a means to write modular code with multiple interactions


- Example: network server that interacts with multiple clients simultaneously

• Sometimes this can speed up the program by overlapping the I/O or time spent waiting for clients to 
respond, but this speedup doesn’t require multiple processors to achieve

• In many cases we can use the same method to achieve real parallelism


- We have used this as a way to test whether your programs can actually execute concurrently

- From now, we will talk about some of the considerations for doing this with intent
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Parallelism

A (mostly) hardware perspective
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Where is the parallelism?

�6https://en.wikichip.org/wiki/amd/ryzen_7/1800x; https://upload.wikimedia.org/wikipedia/commons/3/35/HP_Z820_motherboard.jpg

Multi-core
NUMA: Non-uniform memory access

Out-of-order/
speculative execution

SMT

GPU/DPU/SmartNIC/FPGA/…Accelerators

Distributed

Hide latency

SIMD

Increase IPC

Multi-socket

Ryzen 7 1800X CPU (8 core)

A100 GPU (6912 core)
Bluefield-2 DPU (8 core)

Fugaku (158,976 x 48 core)

https://en.wikichip.org/wiki/amd/ryzen_7/1800x
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 1970  1980  1990  2000  2010  2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Recall

�7https://github.com/karlrupp/microprocessor-trend-data
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How does a processor work?

• Fetch instruction pointed to by PC in memory
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How does a processor work?

• Decode instruction into operator/operand
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How does a processor work?

• Get operands from the register file
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How does a processor work?

• Execute the instruction
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How does a processor work?

• Write back result to the register file
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How does a processor work?

• Increment program counter
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How does a processor work?

• Read and write memory from a computed address
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How does a processor work?

• Instead of incrementing the PC, set it to a computed value
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How does a processor work?

�16https://github.com/karlrupp/microprocessor-trend-data
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Intel Core i7 Haswell

• Up to 192 instructions in-flight


• Up to 48 predicted branches ahead


• Up to 8 instructions/cycle issued 
out-of-order


• About 25 pipeline stages at ~4GHz


- Question: how far does light travel during a clock cycle?

- How large is a motherboard?

�17https://www.realworldtech.com/haswell-cpu/
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How to make a processor faster

• Instruction pipelining


- Independent instructions can follow each other

- Start instruction n+1 after instruction n finishes the first stage

• Superscalar execution


- Multiple execution units in parallel

- Scheduler issues multiple instructions in the same cycle

• Out of order execution


• Simultaneous multi-threading (SMT) (a.k.a. hyper threading)


- Scheduler issues multiple instructions in the same cycle, from different threads

• Do more per instruction
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SIMD

• Single-Instruction Multiple-Data (SIMD) is a kind of data parallelism


- Amortise the control overhead over the instruction width

- In contrast to the SIMT model of CUDA/OpenCL, the vector width is exposed directly to the programmer
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SIMD

• Brief history of x86 SIMD extensions


- MMX (Pentium): 8 x 8-bit integer operations

- SSE (Pentium 3): 4 x 32-bit floating-point operations

- SSE2 (Pentium 4): 2 x 64-bit operations

- SSE3, SSSE3, SSE4.1, SSE4.2 …

- AVX (Sandy Bridge), AVX-2 (Haswell): 256-bit operations

- AVX-512 (KNL, Skylake): 512-bit operations

- AVX-VNNI (Cascade lake):  Vector neural network instructions

• Available instructions depends on the target architecture!
�20https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html 
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SIMD

• Neglecting SIMD is becoming more costly


- Sandy Bridge (2009): 8-way SIMD

- Skylake (2015): 16-way SIMD

- Centaur CNS (2019): 4096-way SIMD
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SIMD

• Example: SAXPY


- How to vectorise:
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float saxpy(float alpha, float x, float y) { 
    return alpha*x + y; 
}

#include <immintrin.h> 

__m128 saxpy4(float alpha, __m128 xs, __m128 ys) { 
    __m128 a = _mm_set_ps1(alpha); 
    __m128 b = _mm_mul_ps(a, xs); 
    __m128 c = _mm_add_ps(b, ys); 
    return c; 
}



SIMD

• Example: dot product


- How to vectorise?
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float dotp(float xs[4], float ys[4]) { 
  float r = 0; 
  for (int i = 0; i < 4; ++i) { 
    r += xs[i] * ys[i]; 
  } 
  return r; 
}



SIMD

• Example: dot product


- How to tell which one is better?

- Benchmark! This won't tell us why; tools such as LLVM MCA can help

�24https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction

float dotp_v1(__m128 xs, __m128 ys) { 
  __m128 a = _mm_mul_ps(xs, ys); 
  __m128 b = _mm_hadd_ps(a, a); 
  __m128 c = _mm_hadd_ps(b, b); 
  float  d = _mm_cvtss_f32(c); 
  return d; 
}

float dotp_v2(__m128 xs, __m128 ys) { 
  __m128 a = _mm_mul_ps(xs, ys); 
  __m128 d = _mm_shuffle_ps(a, a, 0x55); 
  __m128 e = _mm_add_ss(a,d); 
  __m128 f = _mm_unpackhi_ps(a, a); 
  __m128 g = _mm_shuffle_ps(a, a, 0xff); 
  __m128 h = _mm_add_ss(f, e); 
  __m128 i = _mm_add_ss(h, g); 
  float  r = _mm_cvtss_f32(i); 
  return r; 
}

https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction


Array of Structures (AoS)

• Array of structures


- Most logical data organisation layout

- Extremely difficult to access memory for reads (gather)  
and writes (scatter)

- Prevents efficient vectorisation

- May lead to better cache utilisation if data is accessed randomly
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x y z x y z x y z

struct Point { 
  float x,y,z; 
}; 

void dotp_aos( 
    Point p1[128], 
    Point p2[128], 
    float rs[128] 
) { 
  for (int i = 0; i < 128; ++i) { 
    rs[i] = p1[i].x * p2[i].x 
          + p1[i].y * p2[i].y 
          + p1[i].z * p2[i].z; 
  } 
}



Structure of Arrays (SoA)

• Structure of arrays


- Separate array for each field of the structure

- Keeps memory access contiguous when vectorisation 
is performed over structure instances

- Typically better for vectorisation and to avoid false sharing
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struct Points { 
  float x[128], y[128], z[128]; 
}; 

void dotp_soa( 
    Points p1, 
    Points p2, 
    float rs[128] 
) { 
  for (int i = 0; i < 128; ++i) { 
    rs[i] = p1.x[i] * p2.x[i] 
          + p1.y[i] * p2.y[i] 
          + p1.z[i] * p2.z[i]; 
  } 
}



Parallelism

A software developer’s perspective
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What’s in a game?

• Multiple kinds of code:


- Gameplay simulation

• Models the state of the game world as interacting entities

• Sound, networking, user input, etc.

- Numeric computation

• Physics, collision detection, path finding, scene graph traversal, etc.

- Rendering

• Pixel & vertex attributes; runs on the GPU

�28Sekiro: Shadows Die Twice, FromSoftware



What’s in a game?

• Parallel application design


- In practice large applications consist of 
a mix of concurrency and parallelism

- Parts may be run concurrently, but there are also (data) dependencies

- Usually, individual tasks are not the same size

�29The Witness, Thekla
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What’s in a game?

• Parallel application design


- In practice large applications consist of 
a mix of concurrency and parallelism

- Parts may be run concurrently, but there are also (data) dependencies

- Usually, individual tasks are not the same size
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Task parallelism

• Task parallelism


- Problem is broken down into separate tasks

- Individual tasks are created and communicate/synchronise with each other

- Task decomposition dictates scalability
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Fork-Join

• Splits control flow into multiple forks which later rejoin


- Can be used to implement many other patterns
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A

CB

D

data Async a 

do 
  a  <- compute_A 
  b' <- async (compute_B a) 
  c' <- async (compute_C a) 

  b  <- wait b' 
  c  <- wait c' 
  d  <- compute_D b c



Divide-and-conquer

• Many divide-and-conquer algorithms lend themselves to fork-
join parallelism


- Sub-problems must be independent so that they can execute in 
parallel

- Correct task granularity is vital

• Deep enough to expose enough parallelism

• Not so fine-grained that scheduling overheads dominate
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Data parallelism

• Data parallelism


- Problem is viewed as operations over parallel data

- The same operation is applied to subsets of the data

- Scales to the amount of data & number of processors
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Considerations

�35



Parallelism

• Improving application performance through parallelisation means:


- Reducing the total time to compute a single result (latency)

- Increasing the rate at which a series of results are computed (throughput)

- Reducing the power consumption of a computation
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Problem

• To go faster: gain from parallelisation > overhead of adding it


- Granularity: If the tasks are too small: task management overhead > benefit from running them in parallel

- Data dependencies:  When one task depends on another, they must be performed sequentially
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Load balancing

• The computation should be distributed evenly across the processors


- It may be that some processors will complete their tasks before others and become idle because the work is 
not evenly distributed

• The amount of work is not known prior to execution

• Differences in processor speeds (e.g. noisy system, frequency boost…)

�38



Load balancing

• Static load balancing can be viewed as a scheduling or bin packing problem


- Estimate the execution time for parts of the program and their interdependencies

- Generate a fixed number of equally sized tasks and distribute amongst the processors in some way (e.g. round 
robin, recursive bisection, random…)

- Limitations:

• Accurate estimates of execution time are difficult

• Does not account for variable delays (e.g. memory access time) or number of tasks (e.g. search problems)
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Load balancing

• In dynamic load balancing tasks are allocated to processors during execution


- In a centralised dynamic scheme one process holds all tasks to be computed

- Worker processes request new tasks from the work-pool

- Readily applicable to divide-and-conquer problems
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Speedup

• The performance improvement, or speedup of a parallel application, is:


- Where TP is the time to execute using P threads/processors

• The efficiency of the program is:


• Here, �  can be:


- The parallel algorithm executed on one thread: relative speedup

- An equivalent serial algorithm: absolute speedup

T1

�41

speedup = SP =
T1

TP

efficiency =
SP

P
=

T1

P TP



Maximum speedup

• Several factors appear as overhead in parallel computations and limit the speedup of the program


- Periods when not all processors are performing useful work

- Extra computations in the parallel version not appearing in the sequential version (example: recompute 
constants locally)

- Communication time between processes
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Amdahl

• The execution time (� ) of a program splits into:


-  : time spent doing (non-parallelisable) serial work

-  : time spent doing parallel work

• If                           is the fraction of serial work to be performed, we get the parallel speedup:


• This is called Amdahl’s Law


T1

Wser

Wpar

�43

TP ≥ Wser +
Wpar

P

SP ≤
1

f + (1 − f )/P

f =
Wser

Wser + Wpar



Amdahl

• The speedup bound is determined by the degree of sequential execution in the program, not the number of 
processors


- Strong scaling (fixed-sized speedup):
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Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f )T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f )/P

. (2.4)

T
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FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.
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Amdahl
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• The serial fraction of the program limits the achievable speedup



Gustafson-Barsis

• Often the problem size can increase as the number of processes increases


- The proportion of the serial part decreases

- Weak scaling (scaled speedup):
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FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

S′�P = f + (1 − f )P
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Extra slides

• Intel intrinsics guide


• Godbolt compiler explorer


• uops.info


• Agner Fog 
Software optimisation resources
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https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://godbolt.org
http://uops.info
https://www.agner.org/optimize/

