B3CC: Concurrency

I I:Accelerate

Tom Smeding

- Welcome back!
- The third practical is now available
 - Due Friday 26 January @ 23:59
 - You may work in pairs

Scaling and Speedup

Leftovers from 09: Parallelism

Speedup

- The performance improvement, or speedup of a parallel application, is:
 - Where T_P is the time to execute using P threads/processors

speedu

• The *efficiency* of the program is:

efficiency

- Here, T_1 can be:
 - The parallel algorithm executed on one thread: relative speedup
 - An equivalent serial algorithm: absolute speedup

$$\mathbf{p} = S_P = \frac{T_1}{T_P}$$

$$\mathbf{y} = \frac{S_P}{P} = \frac{T_1}{P T_P}$$

Maximum speedup

- Several factors appear as overhead in parallel computations and limit the speedup of the program
 - Periods when not all processors are performing useful work
 - constants locally)
 - Communication time between processes

- Extra computations in the parallel version not appearing in the sequential version (example: recompute

- The execution time (T_1) of a program splits into:
 - W_{ser} : time spent doing (non-parallelisable) serial work
 - W_{par} : time spent doing parallel work

 $T_P \geq V$

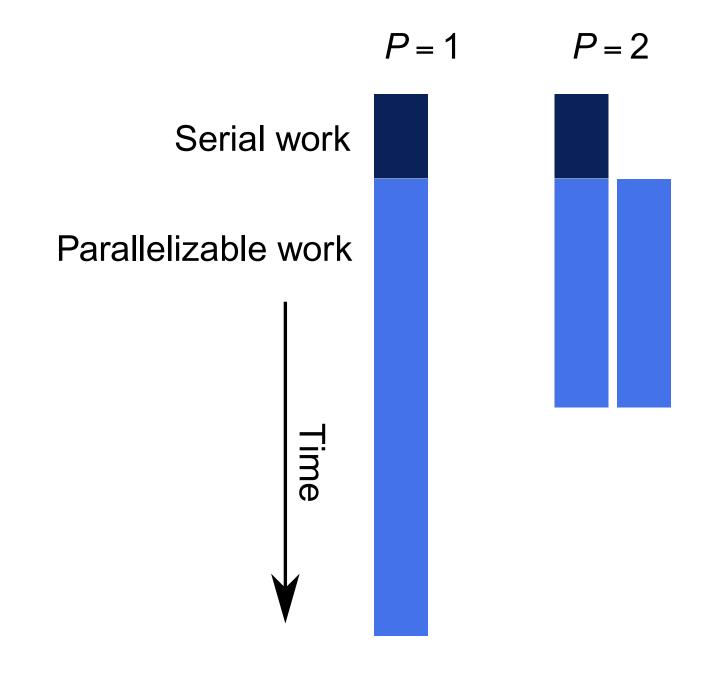
• If $f = \frac{W_{ser}}{W_{ser} + W_{par}}$ is the fraction of serial work to be performed, we get the parallel speedup:

• This is called *Amdahl's Law*

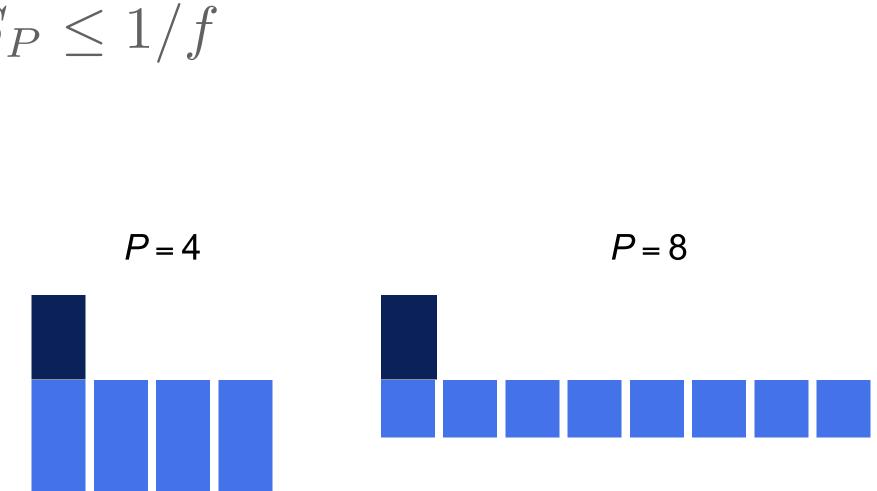
$$W_{\rm ser} + \frac{W_{\rm par}}{P}$$

$$S_P \leq \frac{1}{f + (1 - f)/P}$$

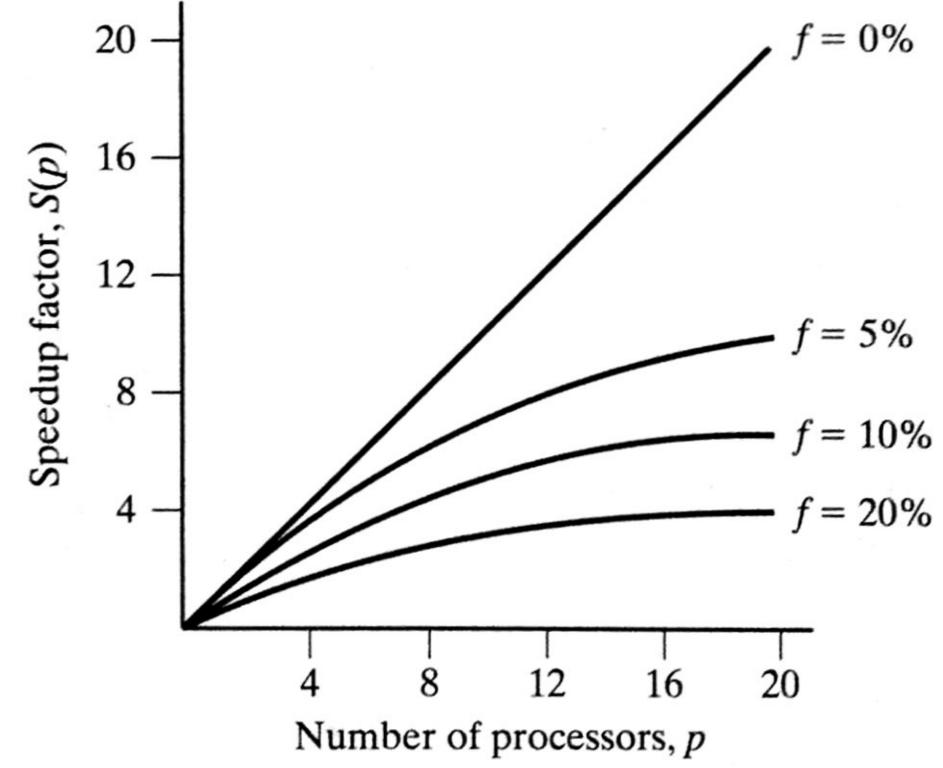
- The speedup bound is determined by the degree of processors
 - Strong scaling (fixed-sized speedup): $\lim_{P\to\infty} S_P \leq 1/f$



• The speedup bound is determined by the degree of sequential execution in the program, not the number of

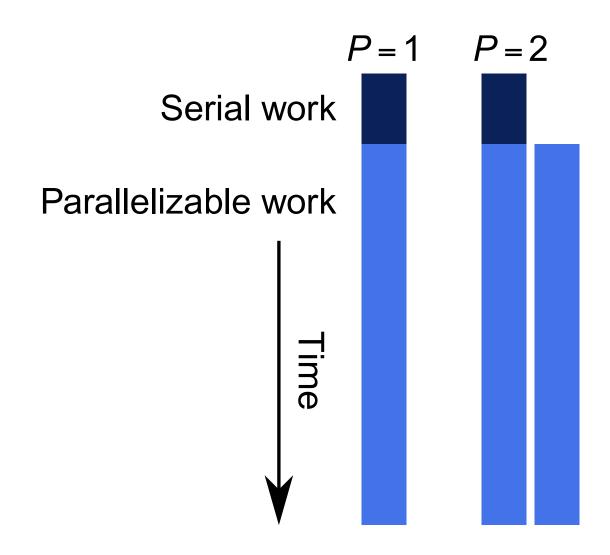


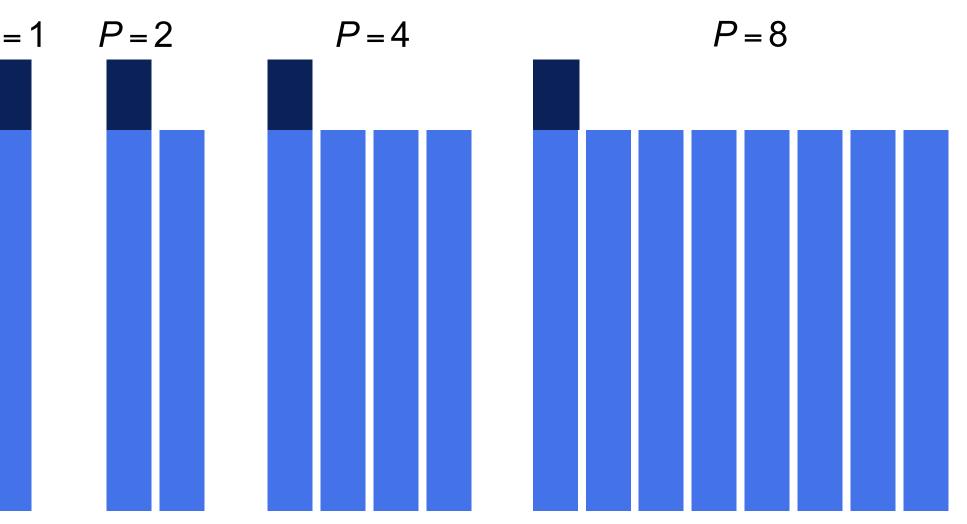
• The serial fraction of the program limits the achievable speedup



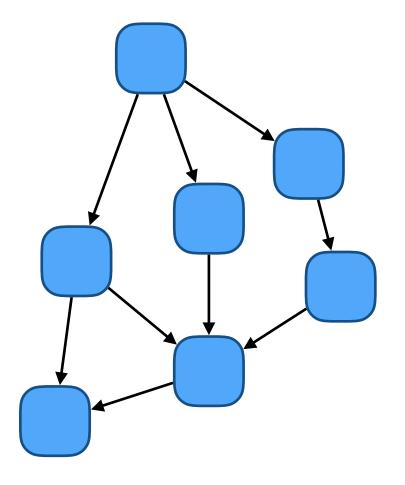
Gustafson-Barsis

- Often the problem size can increase as the number of processes increases
 - The proportion of the serial part decreases
 - Weak scaling (scaled speedup): $S'_P = f + (1 f)P$



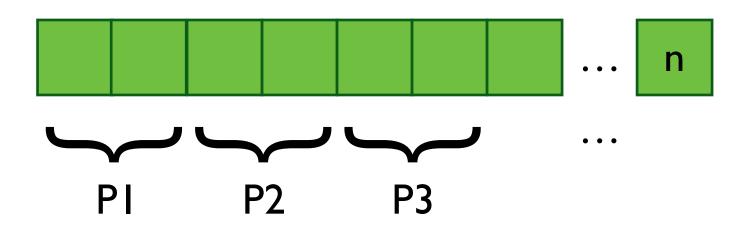


Data parallelism, GPU programming



Task parallelism

- Explicit threads
- Synchronise via locks, messages, or STM
- Modest parallelism
- Hard to program



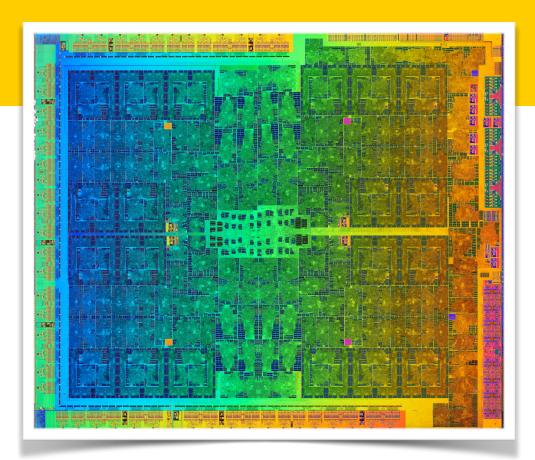
Data parallelism

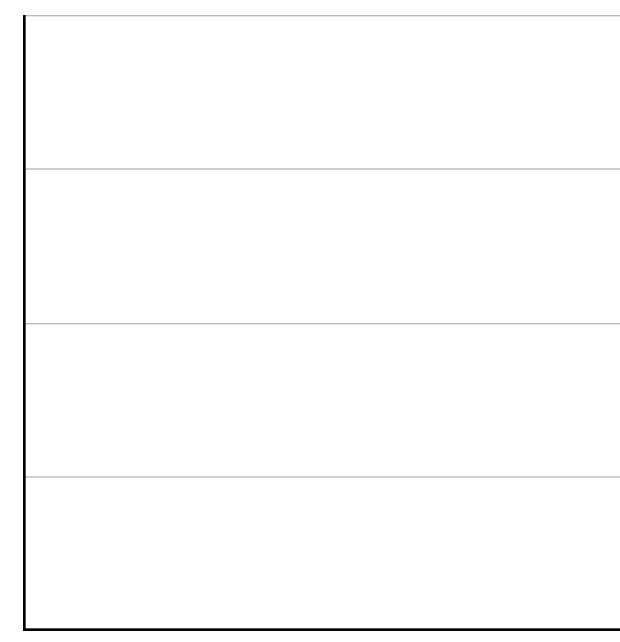
- Operate simultaneously on bulk data
- Implicit synchronisation
- Massive parallelism
- Easy to program

- Despite the name, data parallelism is only a programming model
 - The key is a single logical thread of control
 - It does not actually require the operations to be executed in parallel!
 - Today we'll look at a language for data-parallel programming on the GPU

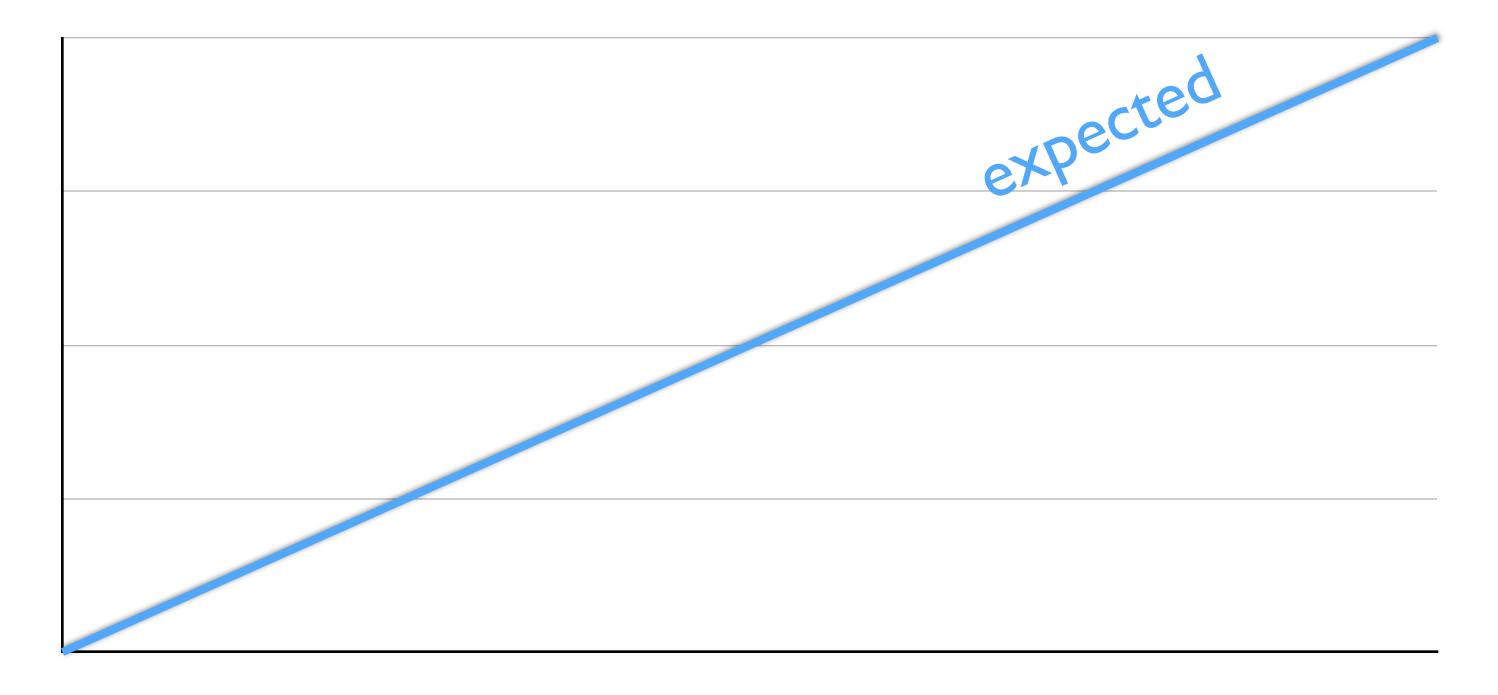
GPU (graphics processing unit)

- Lots of interest to use them for non-graphics tasks
 - Machine learning, bioinformatics, data science, weather & climate, medical imaging, computational chemistry, ...
 - Can have much higher performance than a traditional CPU
- Specialised hardware with a specialised programming model
 - Caches are software programmable; must be wary of associativity
 - Memory management is explicit, with distinct memory spaces
 - Thousands of threads running simultaneously, each of which can modify any piece of memory at any time

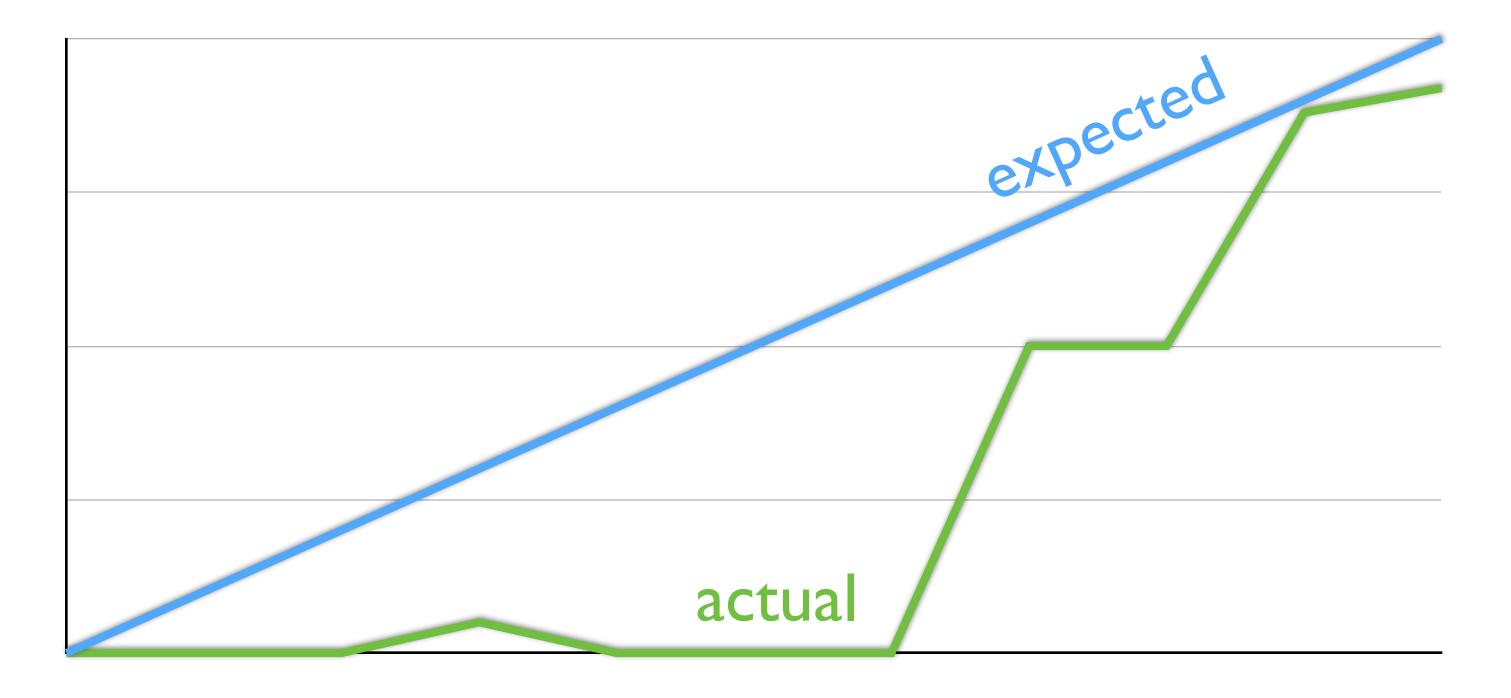




Effort

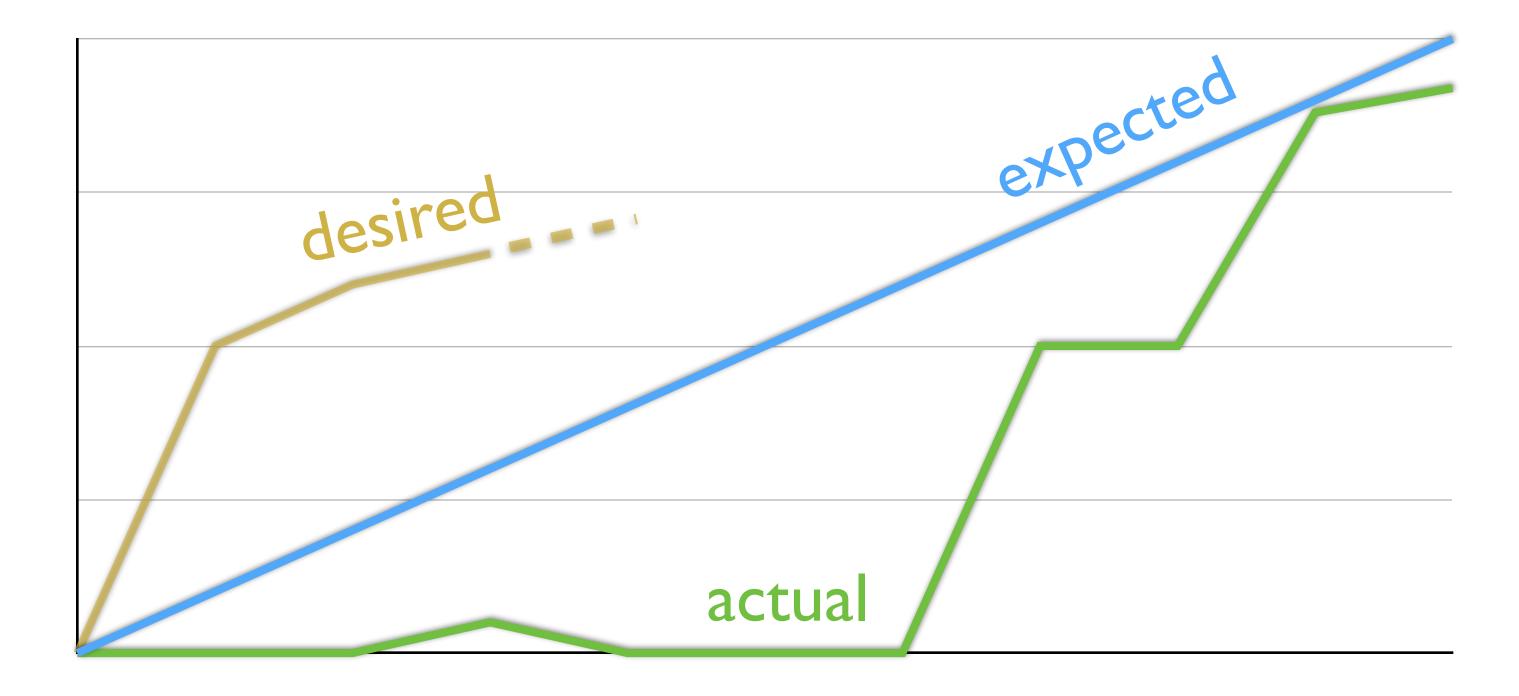


Effort



Effort

GPU programming



Performance

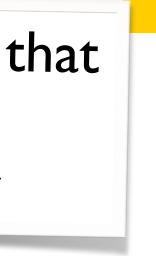
Effort

GPU programming

Performance

https://devblogs.nvidia.com/getting-started-openacc/

After expressing available parallelism, I often find that the code has slowed down. — Jeff Larkin, NVIDIA Developer Technology

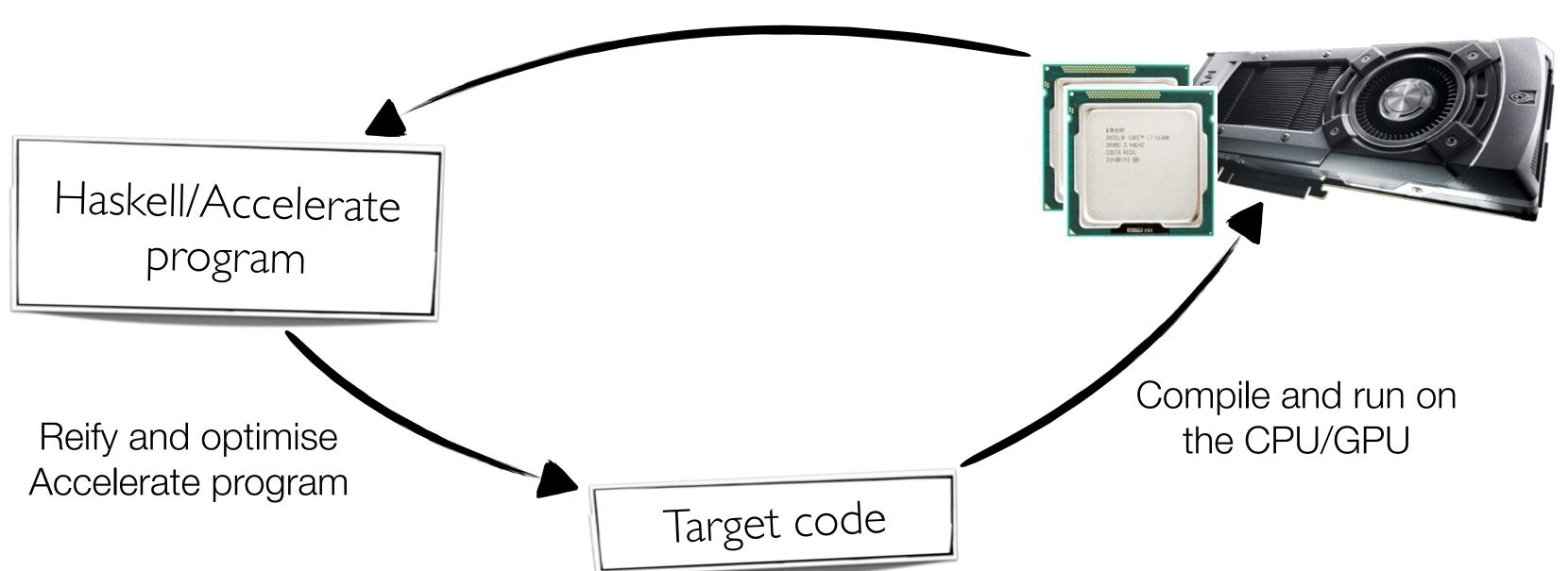


GPU programming

- Two main difficulties:
 - I. Structuring the program in a way suitable for GPU parallelisation -
 - 2. Writing (performant) GPU code

Accelerate

- An embedded language for *data-parallel arrays* in Haskell
 - Takes care of generating the high-performance CPU/GPU code for us
 - Computations take place on dense multi-dimensional arrays
 - Parallelism is introduced in the form of collective operations on arrays



Copy result back to Haskell

- Computations take place on arrays
 - Parallelism is introduced in the form of collective operations over arrays
 - map, zipWith, fold, scan (various kinds); permutations (data movement); etc.
 - It is a restricted language: consists only of operations which can be executed efficiently in parallel
 - Different types to distinguish parallel computations from scalar expressions

Example: dot product

In Haskell (lists):

import Prelude
dotp :: Num a
 => [a]
 -> [a]
 -> a
dotp xs ys = foldl'

dotp xs ys = foldl' (+) 0 (zipWith (*) xs ys)

Example: dot product

• In Accelerate:

```
import Data.Array.Accelerate
```

dotp :: Num a => Acc (Vector a) -> Acc (Vector a) -> Acc (Scalar a) dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Example: dot product

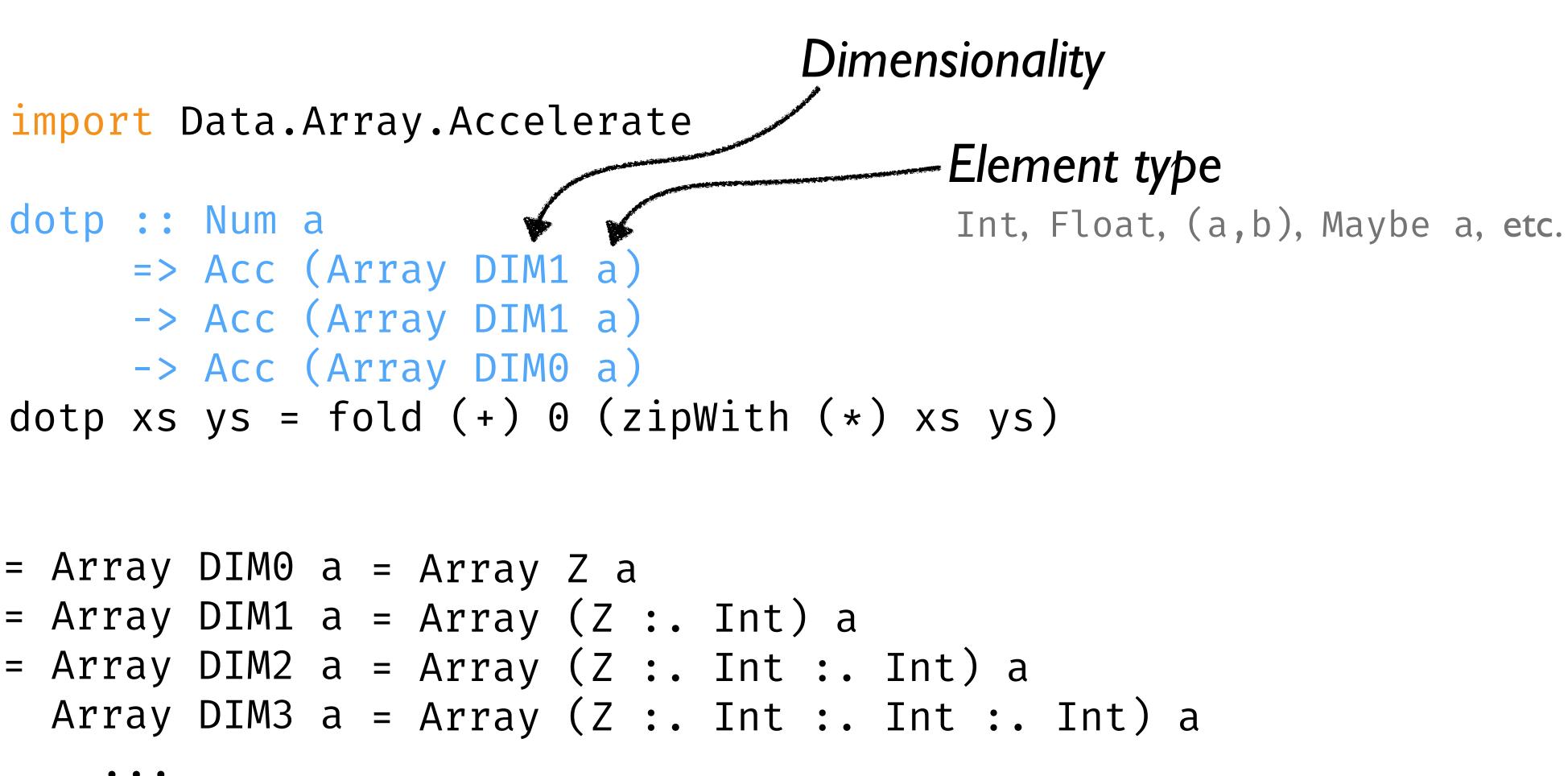
• In Accelerate:

```
import Data.Array.Accelerate
```

```
dotp :: Num a
     => Acc (Array DIM1 a)
     -> Acc (Array DIM1 a)
     -> Acc (Array DIM0 a)
```

```
Scalar a = Array DIMO a = Array Z a
Vector a = Array DIM1 a = Array (Z :. Int) a
Matrix a = Array DIM2 a = Array (Z :. Int :. Int) a
```

• • •



- Compile and execute an Accelerate program
 - The same program can be run on different targets

import Data.Array.Accelerate.Interpreter -- import Data.Array.Accelerate.LLVM.Native -- import Data.Array.Accelerate.LLVM.PTX run :: Arrays a => Acc a -> a runN :: Afunction f => f -> AfunctionR f runN :: (...) => Acc a -> arunN :: (...) => (Acc a -> Acc b) -> a -> b

There's also **runQ**, but don't worry about that

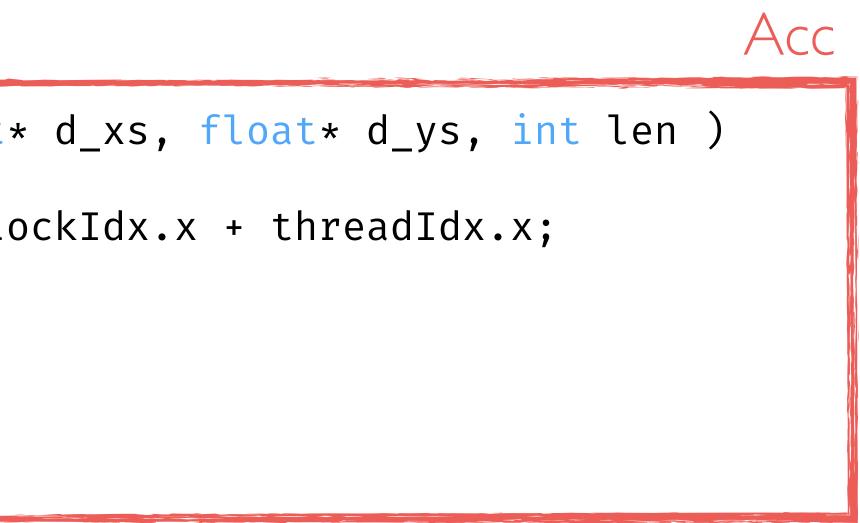
runN :: (...) => (Acc a -> Acc b -> Acc c) -> a -> b -> c

- Parallel computations take place on arrays
 - A stratified language of parallel (Acc) and scalar (Exp) computations
 - Parallel operations consist of many scalar expressions executed in parallel

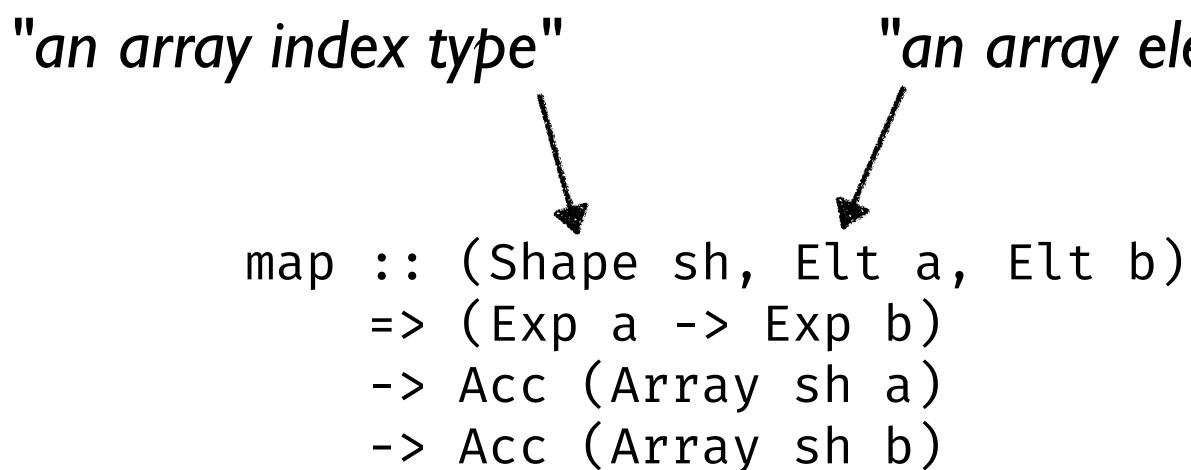
Accelerate

- The map operation:
 - parallel
 - map $(x \rightarrow x+1)$ xs on a one-dimensional array of floats:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in



- The map operation:
 - parallel



- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in

```
"an array element type"
```


- Accelerate is a language embedded in Haskell
 - We reuse much of the syntax, but the semantics are different
 - Strict evaluation, unboxed data, no general recursion...
 - Actually, Acc and Exp are just data structures!
 - Have a Show instance
 - The Haskell program generates the Accelerate program
 - The run operation performs runtime (cross) compilation
 - But the integration has some oddities as well...

Lifting & Unlifting

- Consider the following two types:
 - x :: (Exp Int, Exp Int) y :: Exp (Int, Int)
 - The first is a Haskell pair of embedded expressions on Int
 - The second is an embedded expression returning a pair of Ints
- How to convert between the two?
 - The pattern synonym T2
 - (legacy: the functions lift and unlift (not recommended))

Pattern synonyms

- We use pattern synonyms for constructing & destructing embedded tuples
 - Can't overload built-in syntax (,), (,,), etc.
 - Instead we use T2, T3, etc. at both the Acc and Exp level

result :: Acc (Vector Int, Scalar Int) result = ...

T2 idx tot = result -- idx :: Acc (Vector Int) -- tot :: Acc (Scalar Int)

res = T2 tot idx -- res :: Acc (Scalar Int, Vector Int)

Shapes

- Array shapes (& indices) are snoc-lists formed from Z and (:.)
 - Z is a zero-dimensional (scalar)
 - (:.) adds one inner-most dimension on the right

type DIM1 = Z :. Int type Vector a = Array DIM1 a

More pattern synonyms for constructing & destructing indices

x :: Exp Int

I1 x :: Exp DIM1 -- you'll need this one

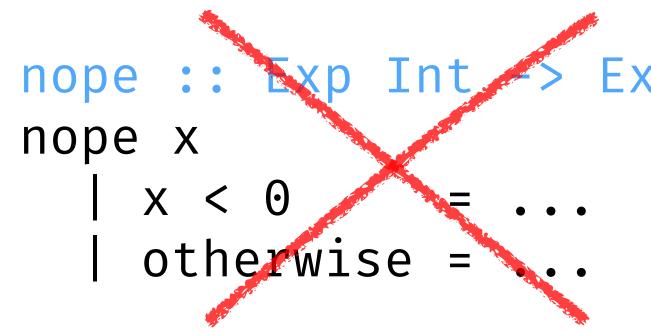
Pattern matching

- Use the match operator to perform pattern matching in embedded code
 - Also note the pattern synonyms for constructing/deconstructing cases

foo :: Exp (Maybe Int) -> Exp Int foo x = x & match \case Nothing_ -> 0 Just_ y -> y + 1

Guards

- Unfortunately guard syntax doesn't work
 - Use a regular if-then-else (chain) instead



Exp Int

Looping

- Can't write recursive embedded functions directly
 - Need to use an explicit (tail-recursive) looping combinator instead
 - returns true

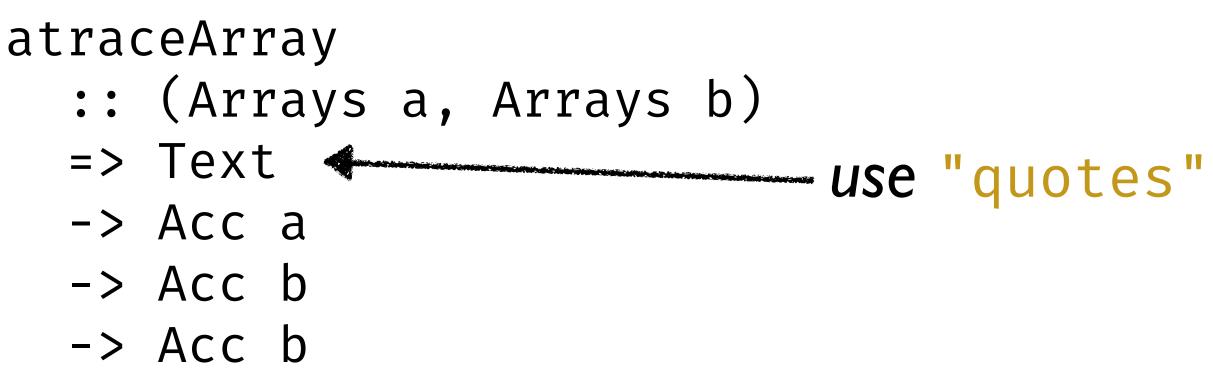
- Continue applying the body function (second argument) as long as the predicate function (first argument)

Scalar Bool))

Debugging

- Some trace functions for printf-style debugging

 - Useful for inspecting intermediate values



- Output a trace message as well as some arrays to the console before proceeding with the computation

Documentation

- More information in the documentation

 - <u>https://hackage.haskell.org/package/accelerate</u> (released version (older))

- <u>https://ics.uu.nl/docs/vakken/b3cc/resources/acc-head-docs</u> (latest version, used in the Quickhull template)

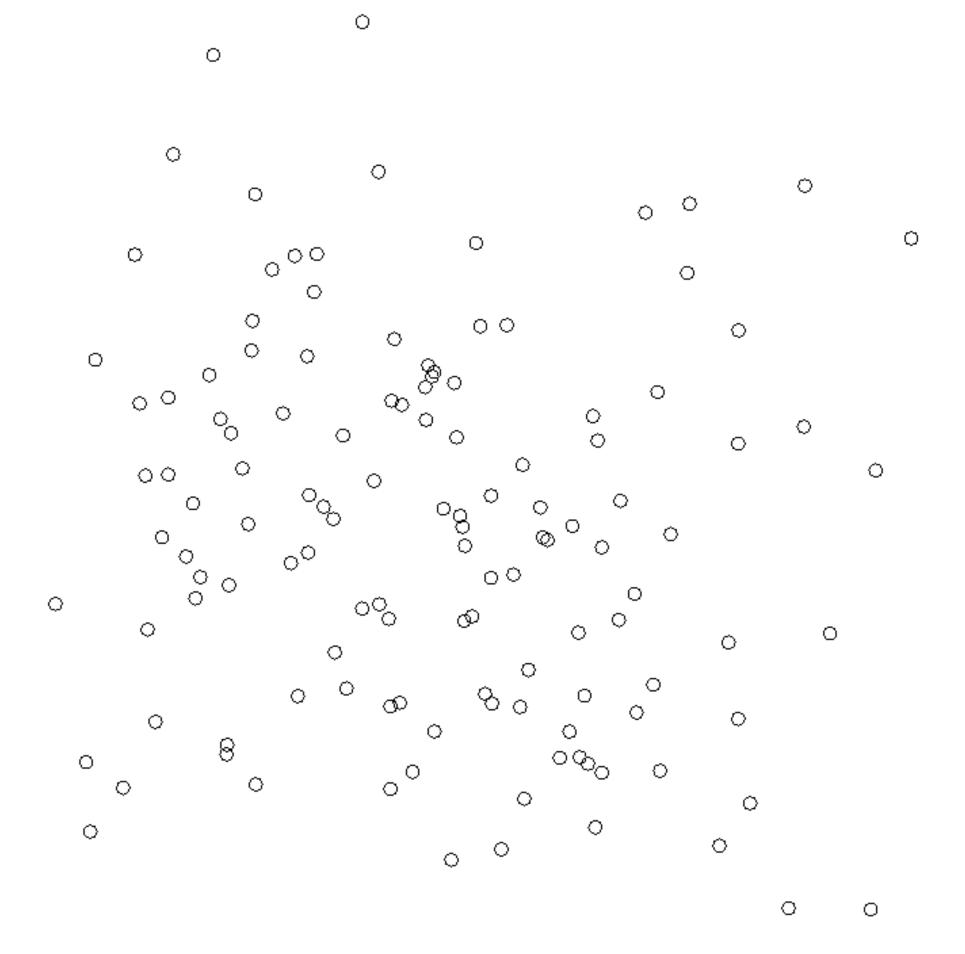
- Implementing a data-parallel program consists of two parts:
 - What are the collective (parallel) operations that need to be done?
 - What does each individual (sequential) thread need to do?

Quickhull

- An algorithm to determine the small polygon containing a set of points
 - You will implement a data-parallel version of the algorithm in Accelerate
 - See the specification for details

41

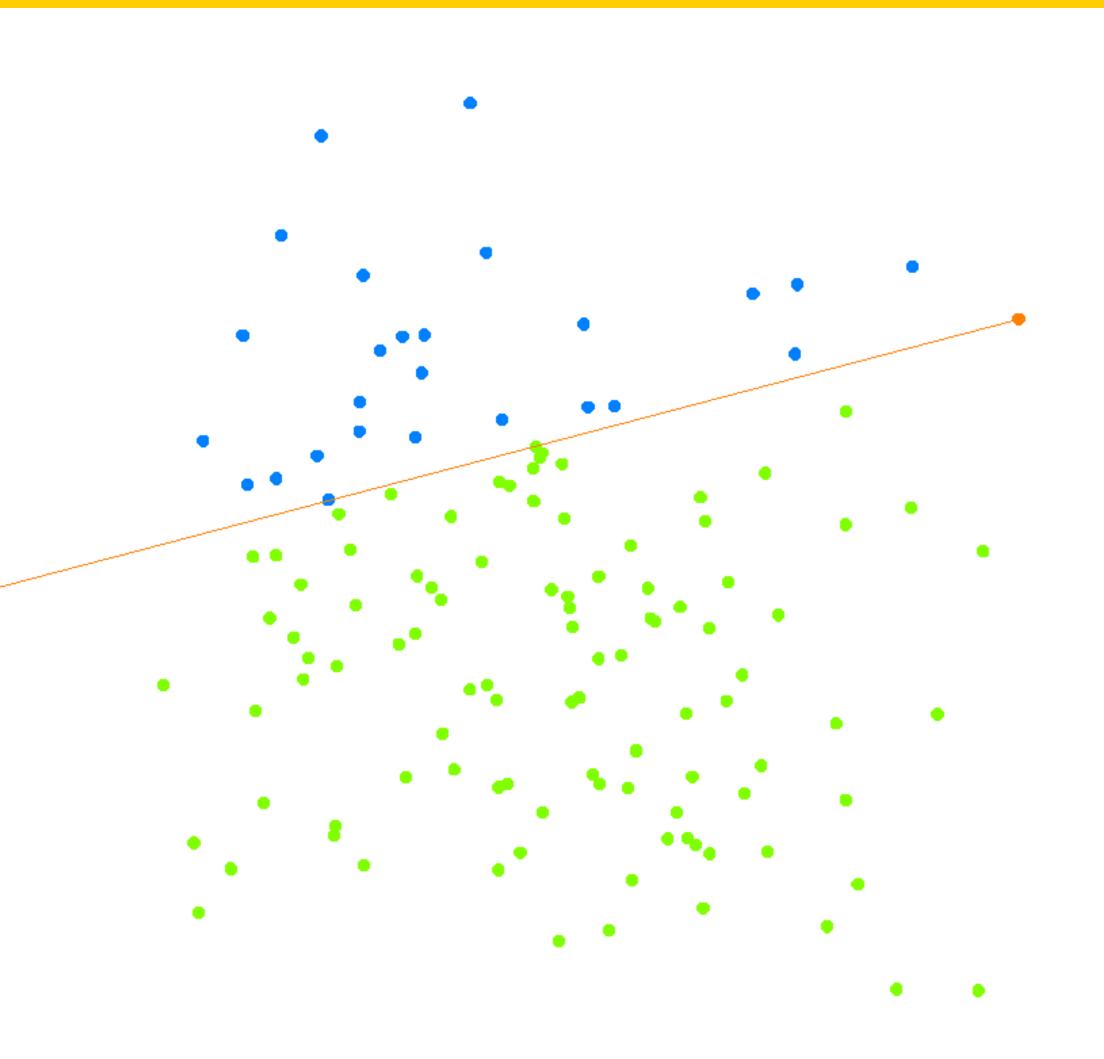
- Initial points
 - The goal is to find the smallest polygon o
 containing all these points
 - This is known as the convex hull



 $^{\circ}$

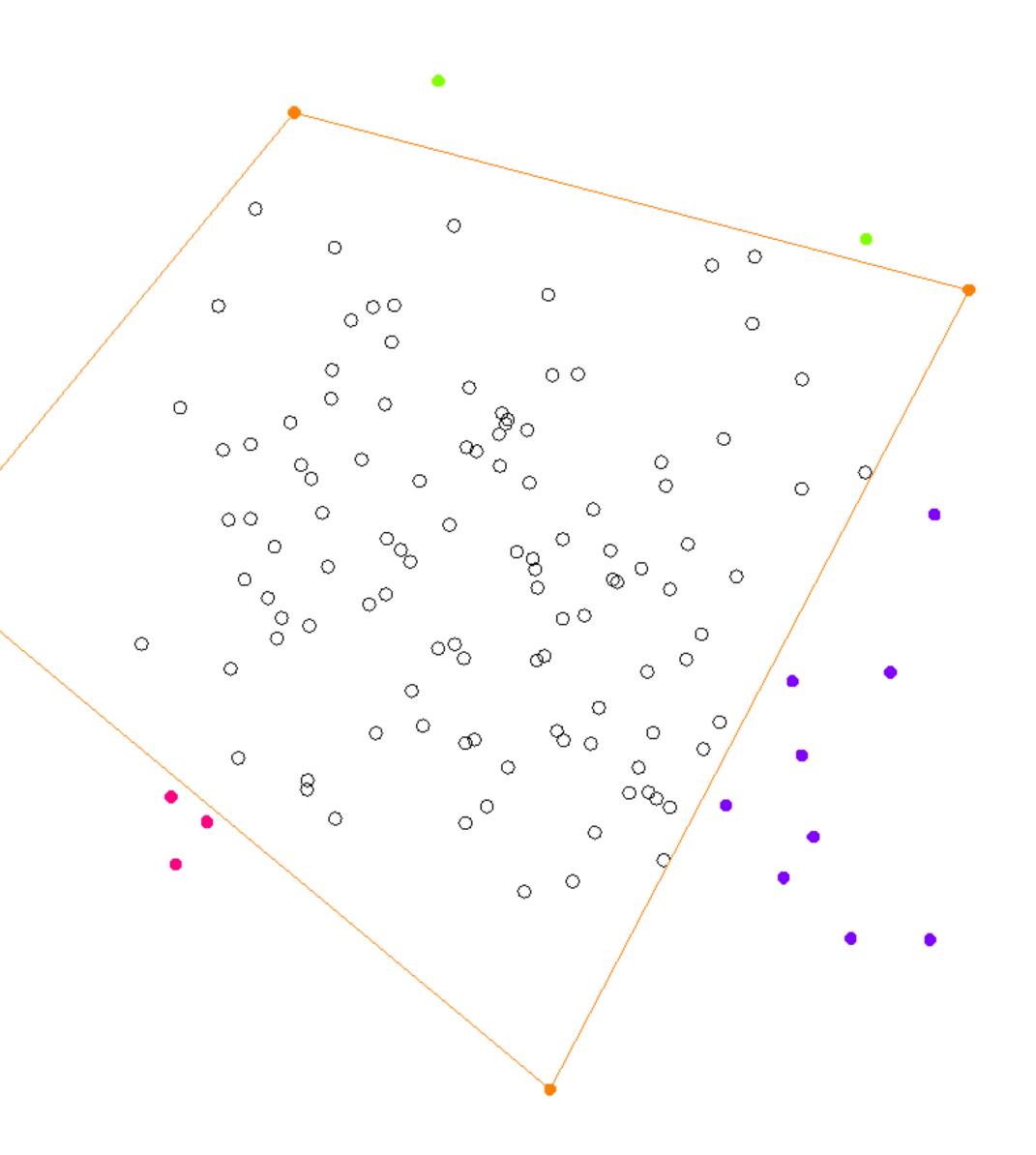
42

- Create initial partition
 - Choose two points that are definitely on the convex hull
 - Partition others to either side of that line (above/left and below/right)
 - Points of the same colour are in the same segment



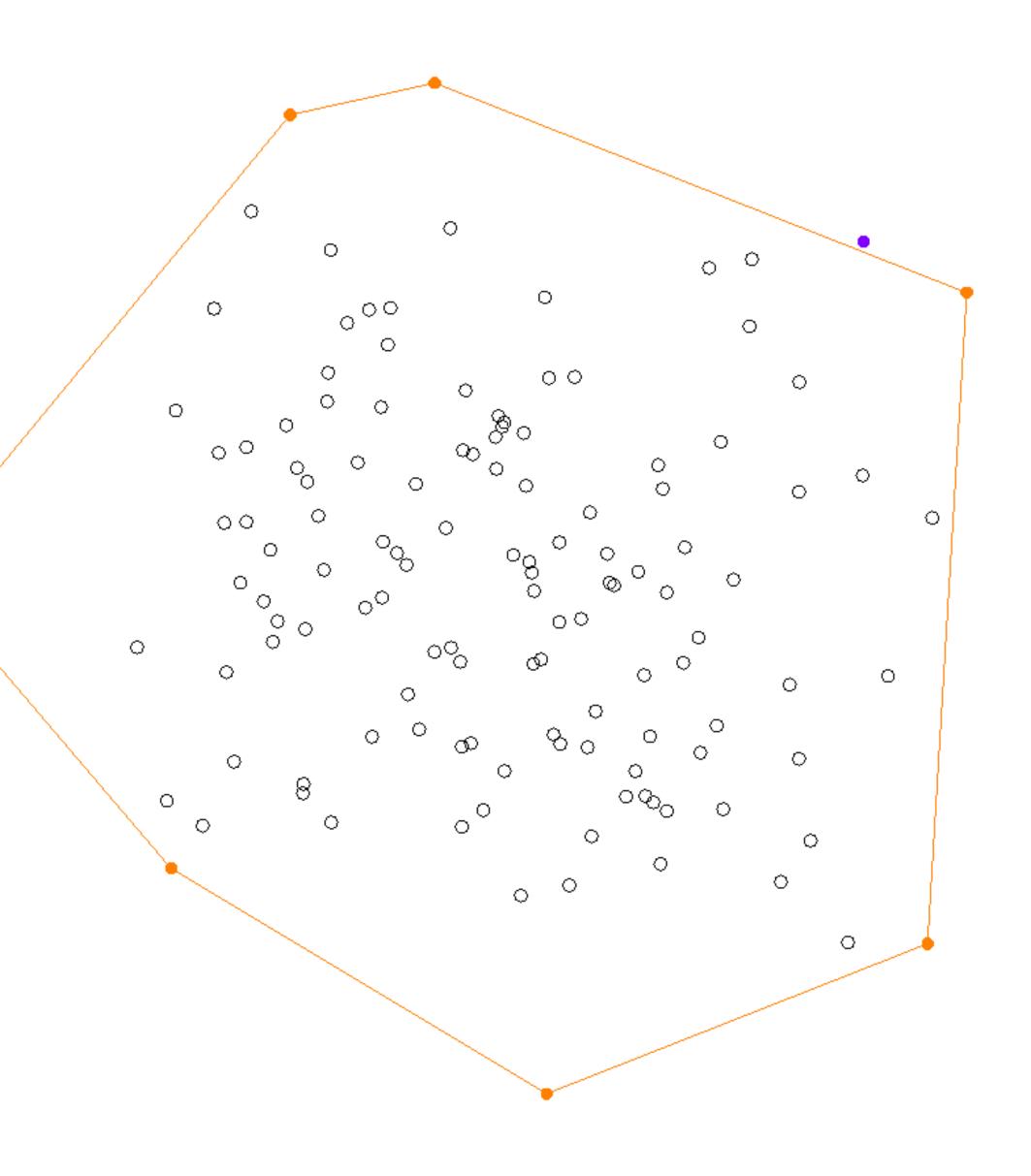
•

- Recursively partition each segment
 - This is done for all points at once, in data-parallel
 - The hollow circles are points no longer under consideration
 - Orange circles are on the convex hull
 - Other colours are still undecided.
 - Same colours are in the same partition



44

Continue partitioning each segment...



• ... until no undecided points remain

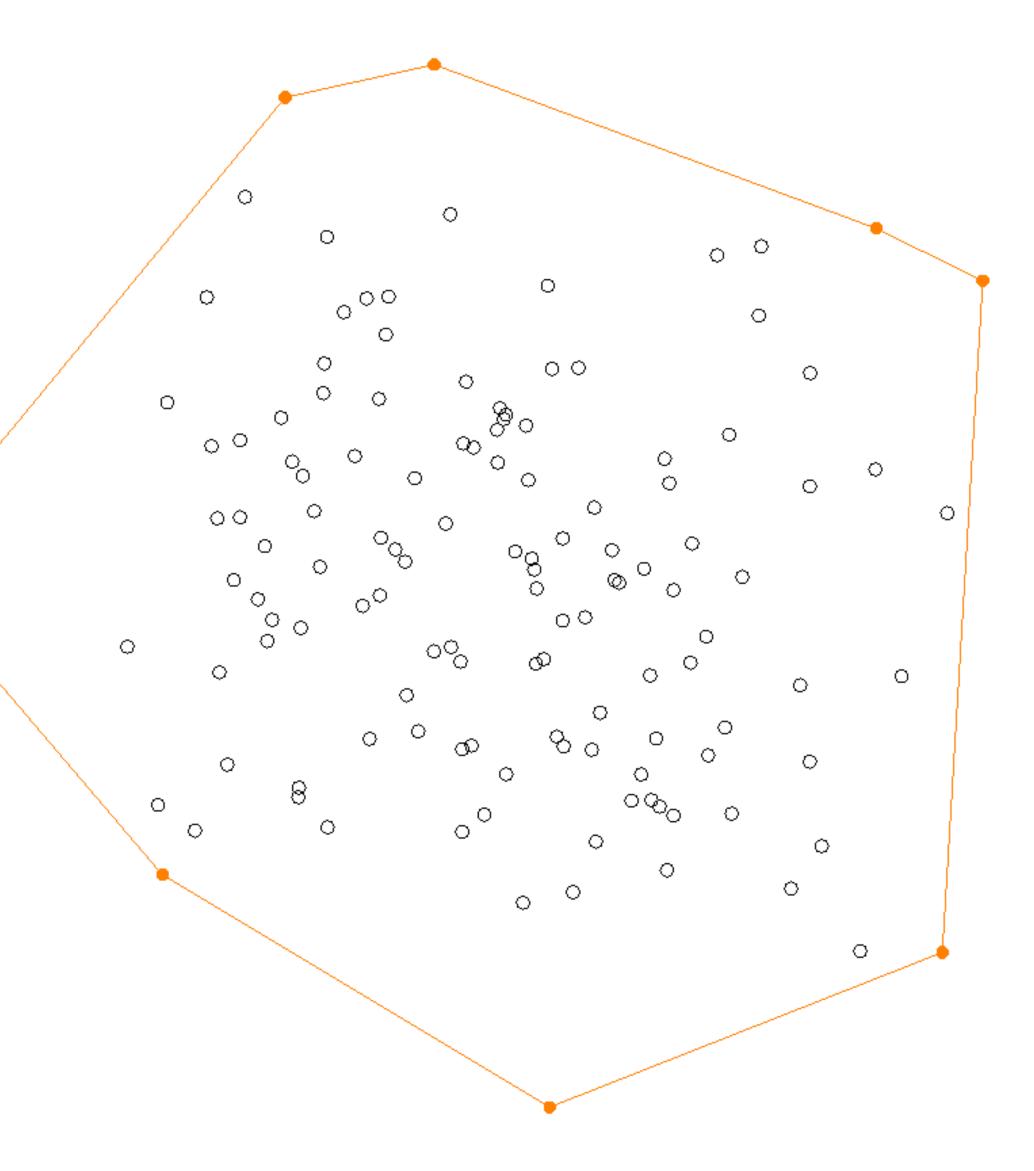
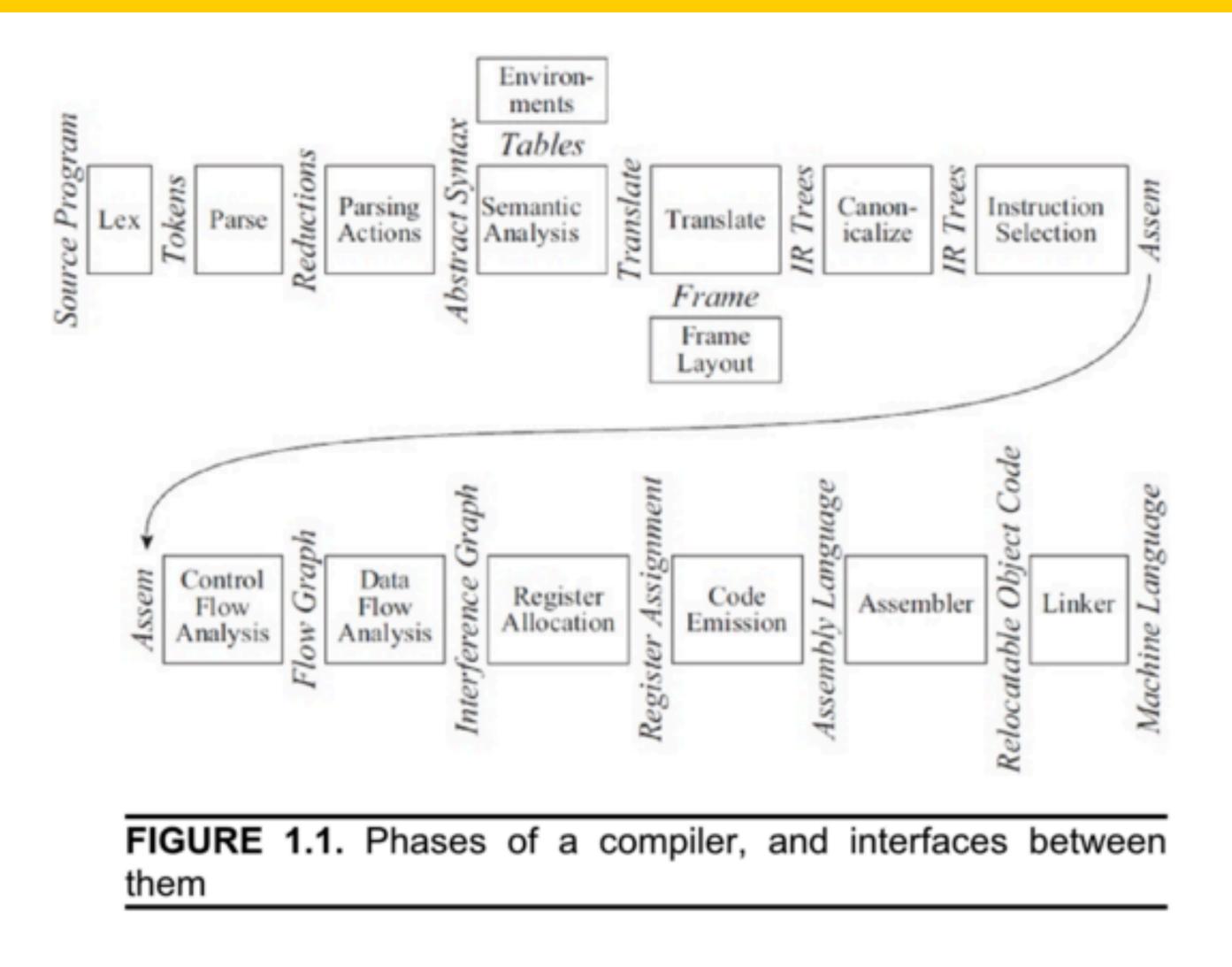


Photo by @zumothesamoyed

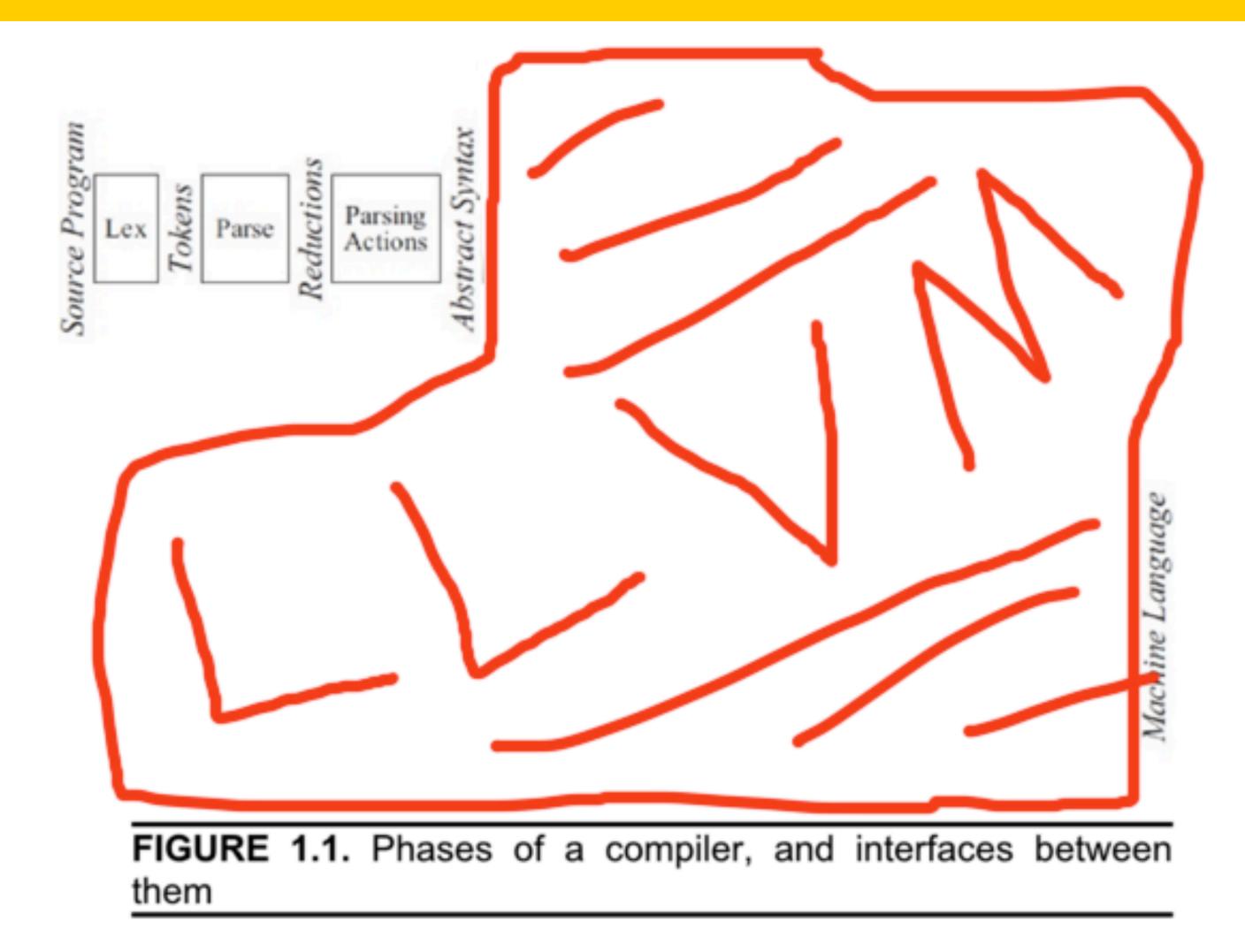
totziens

Traditional compiler construction



Modern Compiler Implementation in Java, A. Appel and J. Palsberg

Modern compiler construction



https://msm.runhello.com/p/1003

