W
= ¥ = Utrecht University

NS

B3CC: Concurrency
| 3: Data Parallelism (2)

lvo Gabe de Wolff

- Data parallelism: well understood & supported approach to massive parallelism

parallel for (1 = 1..N) { XS _.
// ... do Something to XS[i] S | W | W
} P P2 P3

- Single point of concurrency
- Easy to implement: well supported (Fortran, MPl, OpenMP...), scales to large number of processors, etc.
- Good cost model (work & span): conceptually very simple!

- BUT! the “something” has to be sequential

* The map operation applies the same function to each element of a set

- This is a parallelisation of a loop with a fixed number of iterations

- There must not be any dependencies between loop iterations: the function uses only the input element value

and/or index

for (1 =0; 1 < len; ++1i)

{

X = xs[i];

| y = f(x);

ys[i] = vy;

* A map with access to the neighbourhood around each element

- The set of neighbours is fixed, and relative to the element

- Ubiquitous in scientific, engineering, and image processing algorithms

neighbourhood

input array ?

function

output array

- Distribute work via
- Static schedule (like count & list mode of IBAN)
- fork-join

- divide-and-conquer (like search mode of IBAN)

» A GPU program consists of the kernel that runs on the GPU

- Kernel functions are executed n times in parallel by »n different threads

- Each thread executes the same sequential program
- Each thread can distinguish itself from all others only by it’s thread identifier

* Any information a thread needs should be directly derivable from this ID

~_global void kernel(float* xs, float* ys, int n, ...)

i

int 1dx = blockDim.x * blockIdx.x + threadIdx.x;
1if (idx < n) {
// do something

 We have seen:

- Map
- Stencil
» We will discuss today and next time:
- Gather or backwards permute: random reads
- Scatter or permutation: random writes
- Fold or reduction: combined value of all items

- Scan prefix sum: at each index, combined value of all prior elements

» The gather pattern performs independent random reads in parallel
- Also known as a backwards permutation

- Collects all the data from a source array at the given locations

values

for (1 = 0; 1 < len; ++1i)
{
dices idx = indices[1];
val = values[idx];
result[i] = val;
result }

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.ntml#9:29 8

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:29

» The gather pattern performs independent random reads in parallel

- Requires a function from output index to input index

- Not all input values have to be read
- Some values may be read twice

- Input and output may have different dimensions

</

_—/

Example: matrix transpose

» Transpose rows and columns of a matrix

=

S

9

2
o

3
S

A
8 ———

10

0

11

11

12

Nlw|nn | =

QO (N[O | O

15

10

Example: matrix transpose

» Transpose the rows and columns of a matrix

transpose xs =
I2 rows cols = shape xs
backpermute (I2 cols rows) (\(I2 vy x) — I2 x y) XS

transpose(*x XS, *x VS, rows, cols)

1dx = blockDim.x * blockIdx.x + threadIdx.x;
(idx < n) {

row = idx / rows;

col = 1dx % cols;

Example: matrix transpose

11519
2134
2|16 (10
o| 7|38 ————
3|7 |11
1011112
418 |15
* |In memory, this is stored as:
o|/7 |8 10[11[12| =— 101 3| 7 |11 15

12

Example: matrix transpose

» To write one row of the output,

we read one column of the input

11519
112|334

216 (10
5| 6|78 e

3|7 |11
9 101112

418 |15

1123485673 10|11(12| =— 1013 | 7 (11 15

13

- The memory access pattern for transpose is not ideal

- On the CPU work in tiles to improve cache behaviour

- On the GPU use shared memory explicitly to do coalesced reads & writes

14

» The dense matrix-vector multiply

- Perform a dot-product of each row of the matrix against the vector

- Can be parallelised in different ways

for (r = 0; r < rows; +r) {
result[r] = 0;
for (c = @; ¢ < cols; +c) {
// dot product of this row with the vector
result[r] += matrix[r]lc] * vector[c];

}
}

15

Example: sparse-matrix vector multiply

o o o o =
o =2 O N =
o O O W O
w O O N O
w O O O O

16

Example: sparse-matrix vector multiply

-
-
@)

O
Q\
™
N
O

1

O 0 O 0 O

0

O 0 O

1

O 0 O 3 3

17

Example: sparse-matrix vector multiply

* Multiply a sparse matrix by a dense vector

- Example: Hardesty3 dataset
* Matrix size is 8.2M x 7.6M

* Only 40M non-zero entries (0.000065%)

- Want to store only the non-zero entries, as

only these will contribute to the result

- Together with the row/column index of each

element (various encodings possible)

https://sparse.tamu.edu/Hardesty/Hardesty3

18

https://sparse.tamu.edu/Hardesty/Hardesty3

Example: sparse-matrix vector multiply

« Store matrix in compressed sparse row format (CSR)
- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

OO O o=
O -+ O N =
OO O wo
LW O o N O
w o o o o

- ...corresponds to:

[(o, 1.0), (1, 1.0), (1, 7.0), (2, 3.0), (3, 2.0)
, (1, 1.0), (3, 3.0), (4, 4.0)]

segment descriptor [2. 3, 0, 1, 2]

index-value pairs

19

Example: sparse-matrix vector multiply

« Store matrix in compressed sparse row format (CSR)
- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

—_l

i

LW O O|I0|o

O = OIN|=
O O O|Wwo
LW O OO

O O O

- ...corresponds to:

[(o, 1.0), (1, 1.0),|(1, 7.0), (2, 3.0), (3, 2.0)
, (1, 1.0), (3, 3.0), (4, 4.0)]

segment descriptor [2,, o, 1, 2]

index-value pairs

20

Example: sparse-matrix vector multiply

- Store matrix in compressed sparse row format (CSR)

11000 ndices [o, 1, 1, 2, 3, 1, 3, &4]
8 (7) g CZ) 8 values [1.0, 1.0, 7.0, 3.0, 2.0, 1.0, 3.0, 3.0]
01000 sesment descriptor [2, 3, 0, 1, 2]

000 3 3 vector [3, 1, 0, 2, 1]

* The sparse-matrix dense-vector multiply is then:
|. gather the values from the input vector at the column indices

2. pair-wise multiply (1) with the matrix values (zipWith)

3. segmented reduction of (2) with the matrix segment descriptor

- ... more on reductions and segmented operations next time!

https://github.com/tmcdonell/accelerate-examples/tree/master/examples/smvm

https://github.com/tmcdonell/accelerate-examples/tree/master/examples/smvm

Example: sparse-matrix vector multiply

» This can be viewed as a kind of nested data-parallel computation: parallel computations which spawn further
parallel work

- More difficult to parallelise (for both hardware and software)

- Segmented operators allow us to convert nested parallel computations into flat parallel computations

e | RIS

segmented fold _

22

Gather

- Gather or backwards permutation transforms indices in the output array to indices in the input array
- But; arbitrary memory access patterns are slow (especially on the GPU)
- Simple pattern; many common cases which can be made more efficient

» Next is scatter, forward permutation, which transforms indices in the input array to indices in the output array

23

» The scatter pattern performs independent random writes in parallel

- Also known as forward permutation

- Puts data from the source array into the specified locations

values for (1 = 0; 1 < len; ++1i)
EEEEEEEE
o val = values[i];
indices . L .
1idx = indices[1i];
w; P ,
3 O result[idx] = val;
result }

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:28 24

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:28

» The scatter pattern performs independent random writes in parallel

- Analogously to gather, we can consider scatter as an index mapping f
transforming indices in the input (source) array to indices in the output (destination) array

- More complex than gather, especially if
* fis not surjective: the range of f might not cover the entire codomain
* fis not injective: distinct indices in the domain may map to the same index in the codomain

* fis partial: elements in the domain may be ignored

25

* The index permutation might not cover every element in the output

- We need to first initialise the output array

26

* Multiple values may map to the same output index

- Possible strategies to handle collisions:
* Disallow
* Non-deterministically, one write succeeds

* Merge values with a given associative and commutative operation

27

Collisions: atomic instructions

Possible strategies to handle collisions:
1. Non-deterministically, one write succeeds
- Requires atomic writes
- Writes of single words are typically atomic, but that depends on architecture
2. Merge values with a given associative and commutative operation
- Use an atomic read-modify-write instruction (e.g. atomic_fetch_add), if it exists for this operation
- Use an atomic compare-and-swap loop, if a value is a single word

* Maximal size of a word for compare-and-swap depends on the architecture

3. Use (per element) locks otherwise

28

* A general merge function might need to implement some locking strategy

- If no atomic instruction exists; or multiple words are updated

- Recall: this classic spin lock executed on the GPU can deadlock:

do A
old = atomic_exchange(&lock[i], 1);
} while (old = 1);

/* critical section */

atomic_exchange(&lock[i], 0);

29

Example: histogram

« Computing a histogram requires merging writes to the same location

- Sample data: [0,0,1,2,1,1,2,4,8,3,4,9,8,3,2,5,5,3,1,2]

values [[[[[e e e e fef o]

indices
tomi@ o0 (@ 00hi(
result

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:permute

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:permute

» Return only those elements of the array which pass a predicate

|. map the predicate function over the

values to determine which to keep

2. exclusive scan the boolean flags to

determine the output locations and
number of elements to keep

3. permute the values into the position given
by (2) if (1) is true

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.htmi#v:filter 31

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:filter

» Scatter is more expensive than gather for a number of reasons

- Not only to handle collisions!

- Due to the behaviour of caches, there is inter-core communication when threads access the same cache line,

even if there is no actual collision

- If the target locations are known in advance, scatter can be converted into a gather operation (this may require

extra processing)

32

Scatter

» Reframing an algorithm can be key to converting scatter to gather

In computation vs. communication

ifferent tradeoffs

- As always, there are d

scatter

Per element

Time:0.0099864

Cycle: 1360

32.74
2456

DB: lulesh_c*.silo database

Pseudocolor

Var: speed

Var: mesh

Mesh

—16.37

—0.000

Max: 32.74 il
Min: 0.000

>

\f‘/p’

node

i A S

T T
g i
o —

33

o
. e e o W

gather

- Per node

sSummary

» Performance is often more limited by data movement than computation
- Transferring data across memory layers is costly
- Data organisation and layout can help to improve locality & minimise access times
- Design the application around the data movement

» Similar consistency issues arise as when dealing with computation parallelism

» Might involve the creation of additional intermediate data structures

« Some applications are all about data movement: searching, sorting...

34

O
-+
Ol
t..
- D
>
O
@)
-+
©)
i ow
s

https://unsplash.com/@ipet_photo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

