B3CC: Concurrency 13: Data Parallelism (2)

Ivo Gabe de Wolff

Data parallelism: well understood & supported approach to massive parallelism

parallel_for (i = 1...N) { // ... do something to xs[i] }

- Single point of concurrency
- Good cost model (work & span): conceptually very simple!
- BUT! the "something" has to be sequential

- Easy to implement: well supported (Fortran, MPI, OpenMP...), scales to large number of processors, etc.

- The map operation applies the same function to each element of a set
 - This is a parallelisation of a loop with a *fixed* number of iterations
 - There must not be any dependencies between loop iterations: the function uses only the input element value and/or index

- A map with access to the neighbourhood around each element
 - The set of neighbours is fixed, and relative to the element
 - Ubiquitous in scientific, engineering, and image processing algorithms

Data parallelism on CPUs

- Distribute work via
 - Static schedule (like count & list mode of IBAN)
 - fork-join
 - divide-and-conquer (like search mode of IBAN)

- ...

Data parallelism on GPUs

- A GPU program consists of the kernel that runs on the GPU
 - Kernel functions are executed *n* times in parallel by *n* different threads
 - Each thread executes the same sequential program
 - Each thread can distinguish itself from all others only by it's thread identifier
 - Any information a thread needs should be directly derivable from this ID

```
if ( idx < n ) {</pre>
   // do something
```

- ___global___void kernel(float* xs, float* ys, int n, ...)
 - int idx = blockDim.x * blockIdx.x + threadIdx.x;

More parallel patterns

- We have seen:
 - Map
 - Stencil
- We will discuss today and next time:
 - Gather or backwards permute: random reads
 - Scatter or permutation: random writes
 - Fold or reduction: combined value of all items
 - Scan prefix sum: at each index, combined value of all prior elements

Gather

- The gather pattern performs independent random reads in parallel
 - Also known as a backwards permutation
 - Collects all the data from a source array at the given locations

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:29

Gather

- The gather pattern performs independent random reads in parallel
 - Requires a function from output index to input index
 - Not all input values have to be read
 - Some values may be read twice
 - Input and output may have different dimensions

Transpose rows and columns of a matrix

Transpose the rows and columns of a matrix

```
transpose :: Elt a \Rightarrow Acc (Matrix a) \rightarrow Acc (Matrix a)
transpose xs =
  let I2 rows cols = shape xs
   in backpermute (I2 cols rows) (\(I2 y x) \rightarrow I2 x y) xs
   int idx = blockDim.x * blockIdx.x + threadIdx.x;
   if(idx < n) {
      int row = idx / rows;
      int col = idx % cols;
       • • •
```

__global__ void transpose(float* xs, float* ys, int rows, int cols)

1	2	3	4
5	6	7	8
9	10	11	12

In memory, this is stored as:

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

1	5	9
2	6	10
3	7	11
4	8	15

• To write one row of the output, we read one column of the input

1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

1	5	9
2	6	10
3	7	11
4	8	15

- The memory access pattern for transpose is not ideal
 - On the CPU work in tiles to improve cache behaviour
 - On the GPU use shared memory explicitly to do coalesced reads & writes

Example: matrix vector multiply

- The *dense* matrix-vector multiply
 - Perform a dot-product of each row of the matrix against the vector
 - Can be parallelised in different ways

```
for (r = 0; r < rows; ++r) {</pre>
  result[r] = 0;
  for (c = 0; c < cols; ++c) {</pre>
```

// dot product of this row with the vector result[r] += matrix[r][c] * vector[c];

- Multiply a sparse matrix by a dense vector
 - Example: Hardesty3 dataset
 - Matrix size is 8.2M x 7.6M
 - Only 40M non-zero entries (0.000065%)
 - Want to store only the non-zero entries, as only these will contribute to the result
 - Together with the row/column index of each element (various encodings possible)

- Store matrix in compressed sparse row format (CSR)
 - Stores only the non-zero elements together with their column index
 - Also need the number of non-zero elements in each row

- Store matrix in compressed sparse row format (CSR)
 - Stores only the non-zero elements together with their column index
 - Also need the number of non-zero elements in each row

• Store matrix in *compressed sparse row* format (CSR)

- The sparse-matrix dense-vector multiply is then:
 - I. gather the values from the input vector at the column indices
 - 2. pair-wise multiply (1) with the matrix values (zipWith)
 - 3. segmented reduction of (2) with the matrix segment descriptor
 - ... more on reductions and segmented operations next time!

https://github.com/tmcdonell/accelerate-examples/tree/master/examples/smvm

indices [0, 1, 1, 2, 3, 1, 3, 4] values [1.0, 1.0, 7.0, 3.0, 2.0, 1.0, 3.0, 3.0] segment descriptor [2,3,0,1,2] vector [3, 1, 0, 2, 1]

- parallel work
 - More difficult to parallelise (for both hardware and software)
 - Segmented operators allow us to convert nested parallel computations into *flat* parallel computations

• This can be viewed as a kind of *nested* data-parallel computation: parallel computations which spawn further

- Gather or backwards permutation transforms indices in the *output* array to indices in the *input* array
 - But; arbitrary memory access patterns are slow (especially on the GPU)
 - Simple pattern; many common cases which can be made more efficient

• Next is scatter, forward permutation, which transforms indices in the *input* array to indices in the *output* array

Scatter

- The scatter pattern performs independent random writes in parallel
 - Also known as forward permutation
 - Puts data from the source array into the specified locations

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:28

- The scatter pattern performs independent random writes in parallel
 - Analogously to gather, we can consider scatter as an index mapping ftransforming indices in the *input* (source) array to indices in the *output* (destination) array
 - More complex than gather, especially if
 - f is not surjective: the range of f might not cover the entire codomain
 - f is not injective: distinct indices in the domain may map to the same index in the codomain
 - f is partial: elements in the domain may be ignored

- The index permutation might not cover every element in the output
 - We need to first initialise the output array

Collisions

- Multiple values may map to the same output index
 - Possible strategies to handle collisions:
 - Disallow
 - Non-deterministically, one write succeeds
 - Merge values with a given associative and commutative operation

Collisions: atomic instructions

Possible strategies to handle *collisions*:

- 1. Non-deterministically, one write succeeds
 - Requires atomic writes
 - Writes of single words are typically atomic, but that depends on architecture
- 2. Merge values with a given associative and commutative operation
 - Use an atomic read-modify-write instruction (e.g. atomic_fetch_add), if it exists for this operation
 - Use an atomic compare-and-swap loop, if a value is a single word
 - Maximal size of a word for compare-and-swap depends on the architecture
- 3. Use (per element) locks otherwise

Collisions: locks

- A general merge function might need to implement some locking strategy
 - If no atomic instruction exists; or multiple words are updated
 - Recall: this classic spin lock executed on the GPU can deadlock:

do { old = atomic_exchange(&lock[i], 1); } while (old = 1); /* critical section */

atomic_exchange(&lock[i], 0);

Example: histogram

- Computing a histogram requires merging writes to the same location

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:permute

Example: filter (compact)

- Return only those elements of the array which pass a predicate
 - 1. *map* the predicate function over the values to determine which to keep
 - 2. exclusive scan the boolean flags to determine the output locations and number of elements to keep
 - 3. *permute* the values into the position given by (2) if (1) is true

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:filter

- Scatter is more expensive than gather for a number of reasons
 - Not only to handle collisions!
 - even if there is no actual collision
 - extra processing)

- Due to the behaviour of caches, there is inter-core communication when threads access the same cache line,

- If the target locations are known in advance, scatter can be converted into a gather operation (this may require

Scatter

- Reframing an algorithm can be key to converting scatter to gather
 - As always, there are different tradeoffs in computation vs. communication
 - Per element: scatter

- Per node: gather

- Performance is often more limited by data movement than computation
 - Transferring data across memory layers is costly
 - Data organisation and layout can help to improve locality & minimise access times
 - Design the application around the data movement
- Similar consistency issues arise as when dealing with computation parallelism
- Might involve the creation of additional intermediate data structures
- Some applications are all about data movement: searching, sorting...

Photo by ipet photo

totziens

