W
= ¥ = Utrecht University

NS

B3CC: Concurrency
| 4: Data Parallelism (3)

lvo Gabe de Wolff

- Data parallelism: well understood approach to massive parallelism
- Distributes the data over the different processing nodes
- Executes the same computation on each of the nodes (threads)
- Scales to very large numbers of processors

- Conceptually simple: single thread of control

P P2 P3

Recap

» So far our parallel patterns are embarrassingly parallel

- Each operation is completely independent™ from

the computation in other threads

» But some collective operations deal with the data as a whole

- The computation of each output element may depend on the results at other outputs (computed by other
threads)

- More difficult to parallelise!

__global__ kernel(*x XS, *x VS, n, ...)
{
1dx = blockDim.x * blockIdx.x + threadIdx.x;
(idx < n) {
// do something & communicate with others

- Combine a collection of elements into a single value
- A function combines elements pair-wise

- Example: sum, minimum, maximum

// foldl (n > 0)

r = x[0];

for (1 = 1; 1 < n; +1)
r = combine(r, x[1i]);

// fold (n = 0)

r = 1nitial value;

for (1 = 0; 1 < n; +1)
r = combine(r, x[1i]);

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.ntml#g:32

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:32

» Parallel reduction changes the order of operations

- Number of operations remains the same, using [log> N| steps

Sequential Parallel

» Parallel reduction changes the order of operations

- In order to do this, the combination function must be associative

=
|

ToXR®T1 QT2 R®T3X® Ty QT5 R Tg X Ty
((((((ro @ 71) @ 72) ®X3) B T4) B T5) R Tp) R T7
= (20 ®71) ® (12 @ 73)) ® ((T4 ® 75) @ (T6 ® 7))

- Other optimisations are possible if the
function is commutative, or the initial value
is an identity element

- In general difficult to automatically prove
these properties for user defined functions

N

w

10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

1st Round

Novak Djokovic (sre) (1) v
Dino Prizmic (croy (Q)
6-2 65-77 6-3 6-4

Alexei Popyrin (aus) v
Marc Polmans ¢ausy (WC)
6-3 77-63 6-2

Yannick Hanfmann (Ger)
Gael Monfils (FrA)

6-4 6-3 7-5

Andy Murray (GBR)

Tomas Martin Etcheverry (arc) (3

6-4 6-2 6-2

Adrian Mannarino (fra) (20) v
Stan Wawrinka ¢sun

6-4 3-6 5-7 6-3 6-0

Alexander Shevchenko (rus)
Jaume Munar Esp) v

6-3 6-3 6-1

Christopher O'Connell (aus) «
Cristian Garin (cH)

3-6 7-5 4-6 6-1 7-5

Roberto Bautista Agut (esp)
Ben Shelton (usa) (16)

6-2 77-62 7-5

Taylor Fritz usa) (12) v
Facundo Diaz Acosta (ArRG)

4-6 6-3 3-6 6-2 6-4

Roberto Carballes Baena (esp)

Hugo Gaston (Fra) (LL) v
6-3 6-2 3-6 6-4

Fabian Marozsan (HuN) v
Marin Cilic (cro)

6-1 2-6 6-27-5

Dane Sweeny (aus) (Q)

Francisco Cerundolo (arc) (22) «

3-6 6-3 6-4 2-6 6-2

Lorenzo Musetti (1a) (25)
Benjamin Bonzi (Fra)
77-68 77-64 4-6 6-2

James Duckworth causy (WC)

Luca Van Assche (FrRA) v
62-77 6-3 3-6 6-3 6-3

Aleksandar Vukic (aus)
Jordan Thompson caus) v

3-6 77-63 6-2 3-6 6-4

Zizou Bergs geL) (LL)
Stefanos Tsitsipas (Gre) (7)

5-7 6-1 6-1 6-3

Lo

e

2nd Round

N. Djokovic .,
A. Popyrin

6-3 4-6 77-64 6-3

G. Monfils
T. Etcheverry v

6-4 6-4 6-4

A. Mannarino «
J. Munar

6-3 6-3 1-6 2-6 6-3

C. O'Connell
B. Shelton «~

6-4 6-1 3-6 77-65

T.Fritz
H. Gaston

6-0 6-3 6-1

F. Marozsan v
F. Cerundolo

77-65 6-4 6-2

L. Musetti
L. Van Assche

6-3 3-6 6°-77 6-3 6-0

J. Thompson
S. Tsitsipas +

4-6 78-66 6-2 77-64

3rd Round

N. Djokovic
T. Etcheverry

A. Mannarino
B. Shelton

T. Fritz
F. Marozsan

L. Van Assche
S. Tsitsipas

4th Round Quarterfinals Semifinals

https://ausopen.com/draws#!mens-singles

Fold in tournaments

 Australian Open has 128 participants

» Fold “computes” the best or maximum player

» Sequentially would take 127 days
- Player | vs player 2, its winner vs player 3, that winner vs player 4, ...
- Assuming a person can only play one match per day

« With enough courts, this takes log2(128) = 7 days

* In reality, takes 15 days as the first rounds take multiple days

- Sum works in parallel because addition is associative

- Sequential: ((x+y)+2z)+w)

- Recursive: ((x+y)+ (z+w))

» Associative: change the position of the parentheses: ((x

y)

z)=(x

- Commutative: change the position of the variables: x+y=y+x

- Example:
* Function composition is associative: (f-g)-h=f:(g" h)

e But not commutative: (/- 2) = (g * f)

Associativity

» “Best” in sports is probably not associative (nor deterministic)

» Strictly speaking, computer arithmetic is not

associlative

- Integer arithmetic can over/underflow

- Floating-point values have limited precision

- Example: 7-digit mantissa

1234.567
45.67844
0.000400

http://www.smbc-comics.com/comic/2013-06-05
https://en.wikipedia.org/wiki/Kahan summation algorithm

1234.567

45.67844

45.67844
0.000400

0.000400
1234.567

WELCOME TO
THE SECRET

ROBOT INTERNET

Prove you are human:

0.1+02=7?

|0.30000000000000004

1280.24544
1280.2454
1280.245

45.67884
1280.2458%
1280.256

10

http://www.smbc-comics.com/comic/2013-06-05
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

* |n practice, the input is split into multiple
tiles (chunks)

* The tiles are distributed over the available
cores (for CPUs) or streaming
multiprocessors (GPUSs)

* The results per tile are then reduced

- With a sequential fold,

or recursively with a parallel fold

https.//developer.download.nvidia.com/assets/cuda/files/reduction.pdf

11

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

» Reduction happens on multiple levels in the hardware

- For a GPU: - For a CPU:
- Each thread handles multiple elements, with a sequential loop - Each SIMD lane ...
- Each warp reduces the values of its threads - Each thread ...

- Each thread block reduces the values of its warps
and writes the results to global memory

- Afterwards, reduce
- In a separate kernel, we reduce the results of all thread blocks
the results of all

threads

12

n—1
a-b= Z Clz'bi
1=0

» The vector dot-product operation pair-wise multiplies the elements of two vectors, and then sums the result
- A combination of zipW1ith followed by a fold

- These operations can be fused to avoid storing the intermediate result

- Array fusion is an important optimisation for collection-based programming models (c.f. loop fusion)

13

 Similar to reduce, but produces all partial reductions of the input

- An important building-block in many parallel algorithms

* Sorting algorithms, lexical comparison of strings, lexical analysis (parsing), evaluating polynomials, adding multi-
precision numbers...

- Trickier to parallelise than reduce
- Two (main) variants: inclusive and exclusive

» Scan is an important building block in many parallel algorithms

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.ntml#9:35 14

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:35

 Two variants: inclusive and exclusive

- Inclusive scan includes the current element in the partial reduction

- Exclusive scan includes all prior elements

// 1inclusive: scanll

r = 1nitial value;

for (1 =0; 1 < n; +1) {
r = combine(r, x[i]);
yli] = r;

15

- Two variants: inclusive and exclusive
- Inclusive scan includes the current element in the partial reduction

- Exclusive scan includes all prior elements

// exclusive: scanl

r = 1nitial value;

for (1 =0; 1 < n; +1) {
y[1] = r;
r = combine(r, x[1i]);

}
// optionally: y[i] = r;

16

» Return only those elements of the array which pass a predicate

|. map the predicate function over the

values to determine which to keep

2. exclusive scan the boolean flags to

determine the output locations and
number of elements to keep

3. permute the values into the position given
by (2) if (1) is true

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.htmi#9:31 17

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:31

« Consider this inclusive prefix sum

- We can use this result to calculate the sum of any interval of the input:
sum [3..6] = ys[5] - ys[1] = 21 - 3 = 18

Y'S

18

Example: Integral Image

 This idea extends to two (or more) dimensions

- Known as the integral image or summed area table

Iy) =3 iu,0)

v=0 u=0

- Suppose | want to find the
sum of the green region:

lapecp =1c —Ip —Ip+ 14
- Can be used to implement a box filter in constant time

- Key component of the Viola-Jones face recognition algorithm

https://youtu.be/uEJ71VIUMMQ

19

https://youtu.be/uEJ71VlUmMQ

* |In the prefix sum we produce all partial reductions of the input

- That is, the reduction of every prefix

1nput (3,4, 4, 4, 4, 3, 5, 4, 5]
scanll (+) input = [3,7,11,15,19,22,27,31,36]

- The prefix sum you might also think of as a cumulative sum
- Variations for inclusive, exclusive, left, right, product, conjunction...

- Sequential calculation is a single sweep of n-1 additions

for (1 =1, 1 < n; +1i)
A[i1] = A[1] + A[1-1]

https://en.wikipedia.org/wiki/Prefix sum 20

https://en.wikipedia.org/wiki/Prefix_sum

- Example: how to parallelise prefix sum

input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

- Split the data over two processors and perform a prefix sum individually on each part:

split: [3,4, 4, 4, 4] ' [3,5, 4, 5]
left/right result: [3,7,11,15,19] : [3,8,12,17]
P | P)

- The left part looks correct, but every element in the right part needs to be incremented by |9

- Luckily, this is the final result of the left side, which we just computed!

21

» Parallel scan split into tiles is classically done in three phases:

|. Upsweep: Break the input into equally sized tiles, and reduce each tile
2. Perform an exclusive scan of the reduction values

3. Downsweep: Perform a scan of each tile, using the per-tile carry-in values computed in step 2 as the initial
value

22

- Example: how to parallelise prefix sum (per-tile)
- Here computed in SIMD (e.g. in a warp on the GPU)

- Parallel scan [again] changes the order of operations

for (d =0

> d < logy N;

: d +) d=0, 2d=|
{

int offset = 2d;
1f (1 = offset) // parallel d=1,2d=2
x[1] = x[i-offset] + x[1];

d=2,24=4

23

Scan

» Three-phase tiled implementation of inclusive scan:

o

iNnitial value

L

L‘L‘ L‘
— — —
— — —

L

QC

If 8
J)
If 8

T

g 00

00

"
‘-
|_—

0—| < <

< 0—| < [

L.

00

Upsweep

Compute carry-in

Downsweep

24

Scan

Xo X1 X2 X3 X4 X5 Xe X7 Xy KXo Xyo Xyn Xp2 X3 Xyg Xys Xg Xy Xy X3 X4 X5 Xg X7 Xg Xg Xjg Xy Xpp X3 Xy X5 Xy X X, Xz Xy X5 Xg X7 Xg X9 Xy9 Xy Xpp Xj3 Xyg X5
l _ - R S

WAL NN
_\i

T
\

X2 X5 X2 Xy Xyt X Xo: X3 X0 X3 X0t X5

X:X, X:X, XXy Xy Xg Xy:Xg Xo:X10 X0 X1 XX 14
X0 X, Xp:X;3 X3 X5 X:X7 X:Xg X0 X1 XoiX13 X0:X15

(a) serial (chained scan) (b) Kogge-Stone (¢c) Sklansky

Xo X1 X2 X3 Xg4 X5 Xg X7 Xg X9 Xy Xy Xyp Xy3 X4 Xgs Xo X1 X X3 X4 X5 Xg X5 Xg Xg Xy Xy

PR Y Y N Y

N
AN A

J

-

Upsweep

¢

N Xo X1 X X3| X4 X5 X Xg] Xg X9 Xy9 Xqq| X2 X3 X4 X5

N RERIRERIRERIREN
INNNNNNNT SARNALANRIAN

Xo:Xy XpiX;3 X3 X5 X3 X7 X3 X XoiX1q Xo:X13 XoiX1s XX, Xy:X, XyiXy Xy X6 X:Xg X9 X1 Xp:X 1, X0iX14
XX, X:X;3 X3 X5 Xo:X7 X:Xg X0 Xqq Xo:X13 X0 X15

[F———————————— ===

NRER S

~
Downsweep

(d) Brent-Kung (e) Reduce-then-scan

Single-pass Parallel Prefix Scan with Decoupled [ook-back, D. Merrill and M. Garland, 2016

https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf

Three-phase scans on GPUs

- Scans are (or used to be) implemented via three phases on GPUs
- Kernel | performs a fold per block
- Kernel 2 scans over the results per block (using a single thread block)
- Kernel 3 performs a scan per block, using the prefix of that block computed in kernel 2
» Synchronization between blocks happens by splitting the program in multiple kernels
- Kernel 2 only starts when all thread blocks of kernel | have finished
» |t Is advised to not perform synchronization between thread blocks within the same kernel

- But...

26

- Chained scans use only one kernel, and do synchronize within the kernel

- Each thread block does the following:
* Read a tile of the array
* Fold
* Wait on prefix of previous tile
* Share own prefix
* Scan

- Three-phase scans typically split the input in a fixed number of blocks,
chained scans use fixed-size blocks as the data should fit in the registers of the threads of a thread block.

https://research.nvidia.com/publication/2016-03 single-pass-parallel-prefix-scan-decoupled-look-back

27

https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back

Chained scans on GPUs

» Chained scans go against the advice of independent thread blocks
* You have to be careful:
- Don’t use the hardware scheduler - implement your own scheduling of thread blocks
- Prevent memory reordering
- Waiting on the prefix of the previous block can be a significant bottleneck
* The Single-pass Parallel Prefix Scan with Decoupled Look-back optimizes this
- Chained may be faster than three-phase scans

- as they read the input once instead of twice

https://research.nvidia.com/publication/2016-03 single-pass-parallel-prefix-scan-decoupled-look-back

28

https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back

» Widely used, well understood & supported approach to massive parallelism

- Single point of concurrency
- Easy to implement
- Good cost model (work & span)

- BUT! the “something” has to be sequential

~ global void kernel(floatx xs, float* ys, int n, ...)
{

int 1dx = blockDim.x * blockIdx.x + threadIdx.x;
1f (idx < n) {

// do something sequentially

// but can not launch further parallel work!

29

* Main idea: allow the “something” to also be parallel
- Now the parallelism structure is recursive and unbalanced
- Still a good cost model

- Wider range of applications: sparse arrays, adaptive methods (Barnes-Hut), divide and conquer (quicksort,
quickhull), graph algorithms (shortest path, spanning tree)

30

 The flattening transformation

- Concatenate the subarrays into one big flat array
- Operate in parallel on the big array
- A segment descriptor keeps track of where the sub-arrays begin
- Example: given an array of nodes in a graph, compute an array of their neighbors

- For instance in findRequests for Delta-stepping

* The scan operation gives us a way to do this

31

» We can also create segmented versions of collective operations like scan

- Generalises scan to perform separate parallel scans on arbitrary contiguous partitions (segments) of the input
vector

- In particular useful for sparse and irregular computations

o e S S

- Can be implemented via operator transform:

(fe,x) @ (fyay> — (fx‘fya it f, then y else x D y)

32

- Lift a binary operator to a segmented version:

- Can be implemented via operator transform
- The lifted operator should be associative!

* Concretely, if ® is associative, then ®s should also be associative

(fe,x) @ (fwy) — (f:v‘fy? it f, then y else x D y)

segmented
ELt a
= (Exp a = Exp a — Exp a)
— (Exp (Bool, a) — Exp (Bool, a) — Exp (Bool, a))
segmented op (T2 fx x) (T2 fy y)
=72 (fx |l fy)
(fy 2 (y, op xy))

33

Segment descriptors

« Segment descriptors describe where segments start, via

- Segment lengths, or
- Head flags

» Create the head flags array
from segment lengths

- The segment descriptor tells us the length
of each segment

- To use the operator from the previous slide,
we need to convert this into a

representation the same size as the input,

with a True value at the start of each

segment and False otherwise

<HeadFlags :: Acc (Vector Int) — Acc (Vector Bool)
<HeadFlags seg =

T2 offset len = scanl' (+) 0 seg
falses = fill (I1 (the len)) False
trues = fill (shape seg) True_
permute const falses

(\ix — Just (I1 (offset!ix))) trues

34

« What about other flavours of scan?

- This approach works directly for inclusive segmented scan

- The exclusive version is similar, but needs to fill in the initial element and take care of (multiple consecutive)
empty segments

35

 Fold (reduction) and scan (prefix sum) can be executed in parallel

- if the operator is associative:(a ®b) ®c=a ® (b @ ¢)

 Prefix sum is a useful application in many (parallel) programming problems

- Use to compute the book-keeping information required to execute nested data-parallel algorithms on flat data-
parallel hardware (e.g. GPUs)

36

Photo by Anusha Barwa "

https://unsplash.com/@anshaaleena?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

