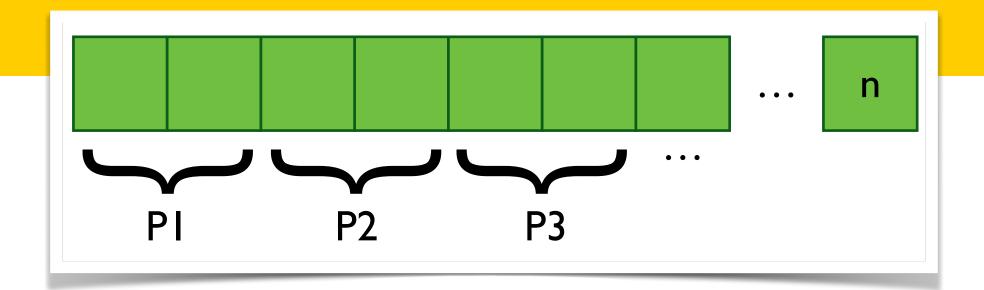


B3CC: Concurrency

14: Data Parallelism (3)

Ivo Gabe de Wolff

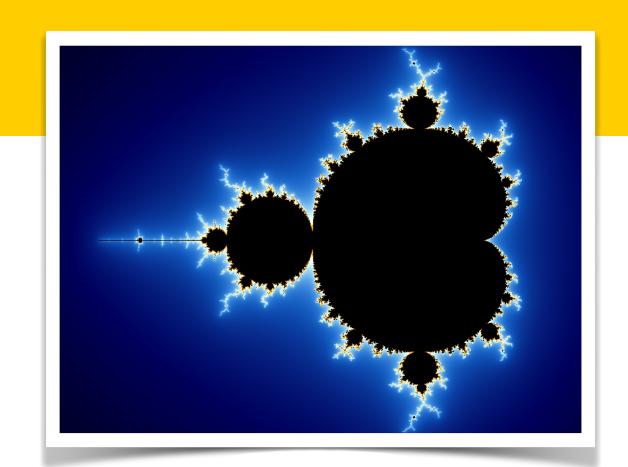
Recap



- Data parallelism: well understood approach to massive parallelism
 - Distributes the data over the different processing nodes
 - Executes the same computation on each of the nodes (threads)
 - Scales to very large numbers of processors
 - Conceptually simple: single thread of control

Recap

- So far our parallel patterns are embarrassingly parallel
 - Each operation is completely independent* from the computation in other threads



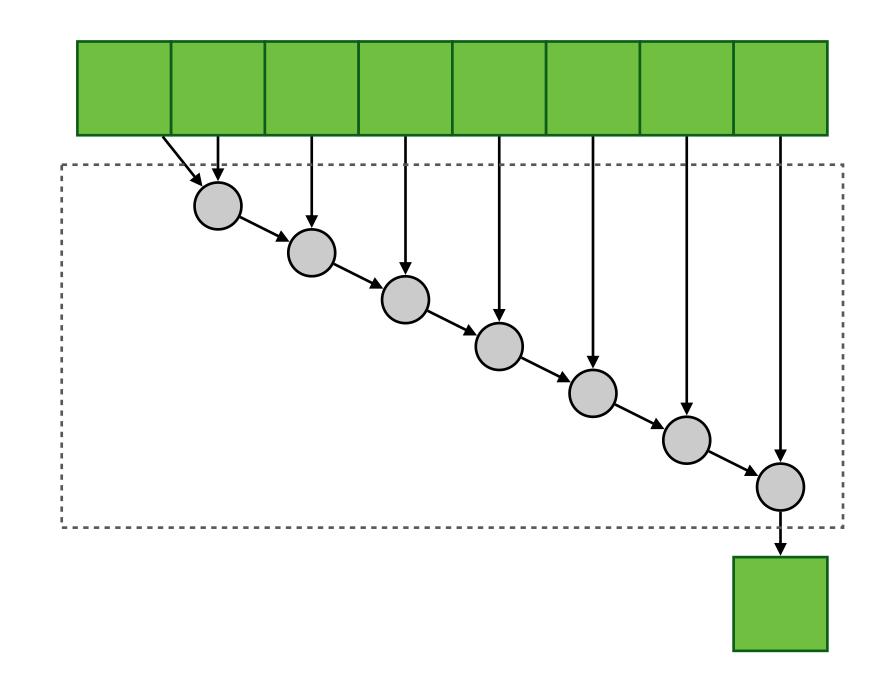
- But some collective operations deal with the data as a whole
 - The computation of each output element may depend on the results at other outputs (computed by other threads)
 - More difficult to parallelise!

```
__global__ void kernel( float* xs, float* ys, int n, ...)
{
   int idx = blockDim.x * blockIdx.x + threadIdx.x;
   if ( idx < n ) {
      // do something & communicate with others
   }
}</pre>
```

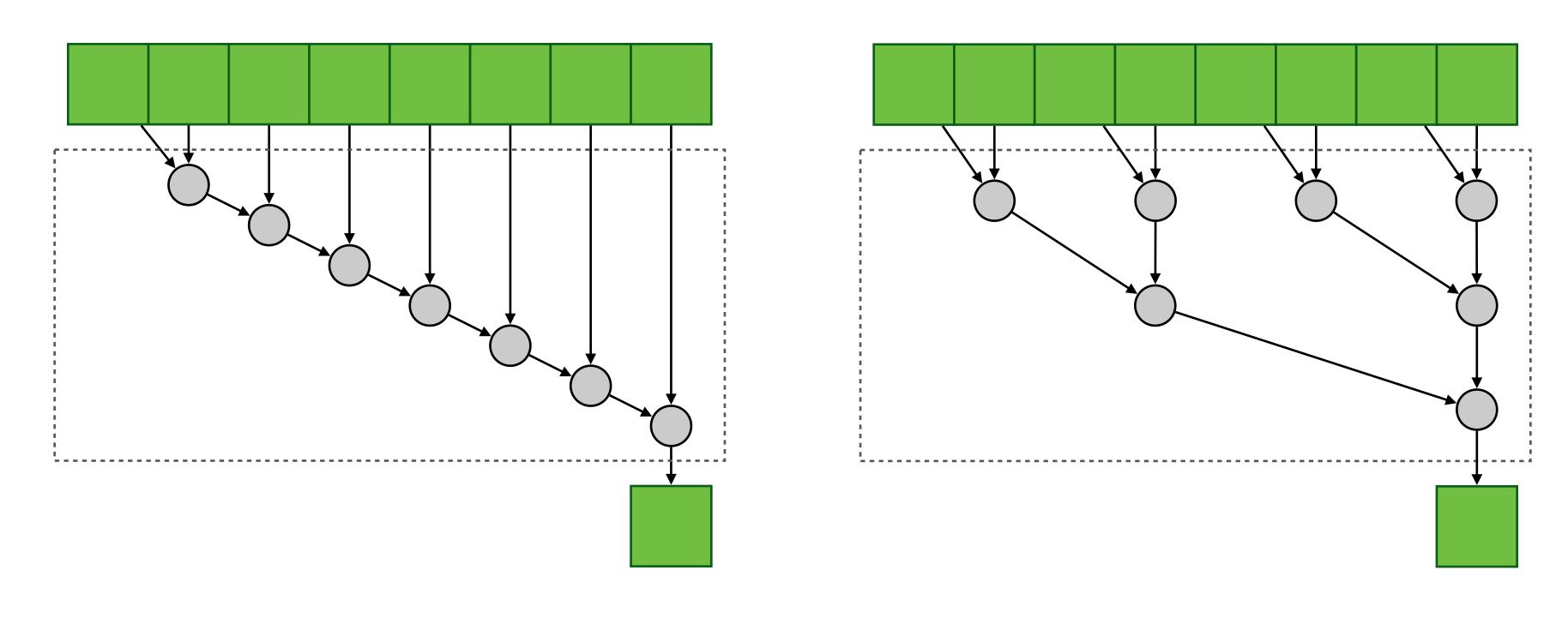
- Combine a collection of elements into a single value
 - A function combines elements pair-wise
 - Example: sum, minimum, maximum

```
// fold1 (n > 0)
r = x[0];
for (i = 1; i < n; ++i)
r = combine(r, x[i]);

// fold (n ≥ 0)
r = initial_value;
for (i = 0; i < n; ++i)
r = combine(r, x[i]);</pre>
```



- Parallel reduction changes the order of operations
 - Number of operations remains the same, using $\lceil \log_2 N \rceil$ steps



Sequential

Parallel

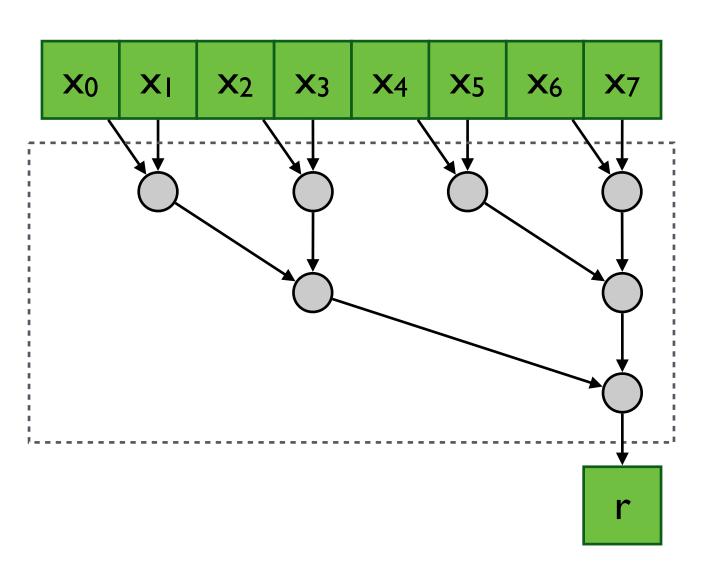
- Parallel reduction changes the order of operations
 - In order to do this, the combination function must be associative

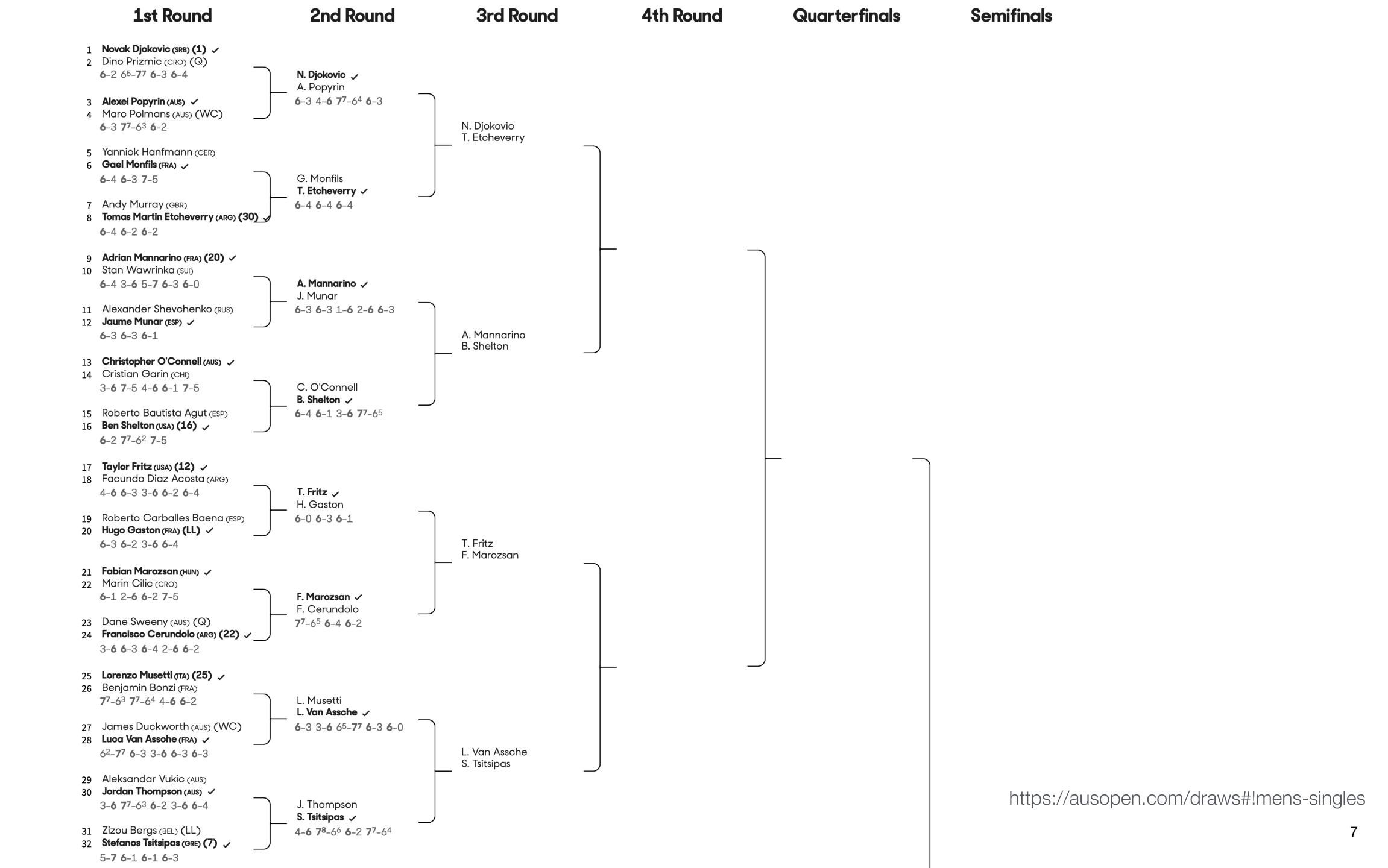
$$r = x_0 \otimes x_1 \otimes x_2 \otimes x_3 \otimes x_4 \otimes x_5 \otimes x_6 \otimes x_7$$

$$= ((((((x_0 \otimes x_1) \otimes x_2) \otimes x_3) \otimes x_4) \otimes x_5) \otimes x_6) \otimes x_7$$

$$= ((x_0 \otimes x_1) \otimes (x_2 \otimes x_3)) \otimes ((x_4 \otimes x_5) \otimes (x_6 \otimes x_7))$$

- Other optimisations are possible if the function is commutative, or the initial value is an identity element
- In general difficult to automatically prove these properties for user defined functions





Fold in tournaments

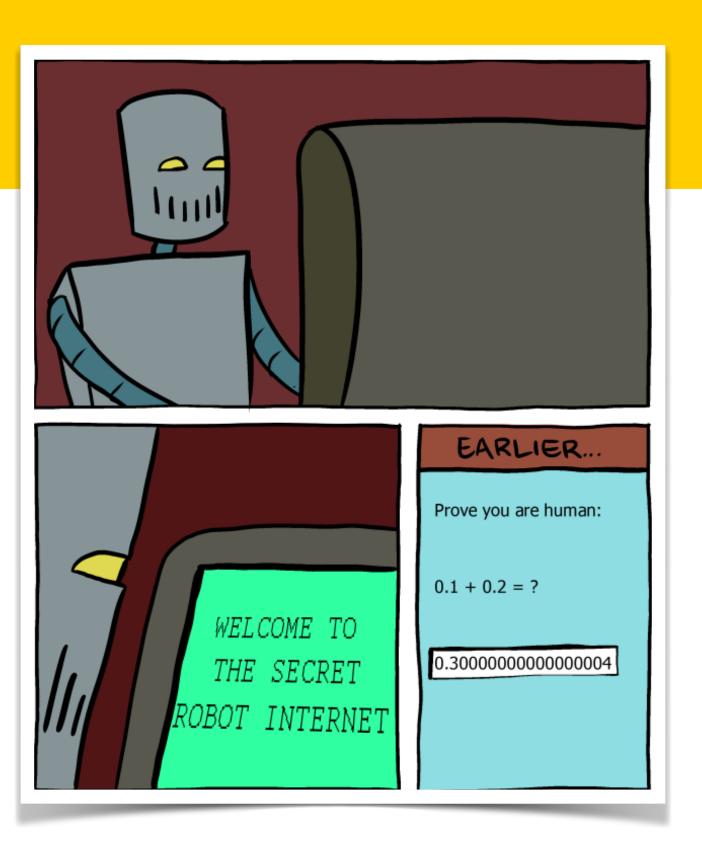
- Australian Open has 128 participants
- Fold "computes" the best or maximum player
- Sequentially would take 127 days
 - Player I vs player 2, its winner vs player 3, that winner vs player 4, ...
 - Assuming a person can only play one match per day
- With enough courts, this takes $log_2(128) = 7 days$
- In reality, takes 15 days as the first rounds take multiple days

Associativity

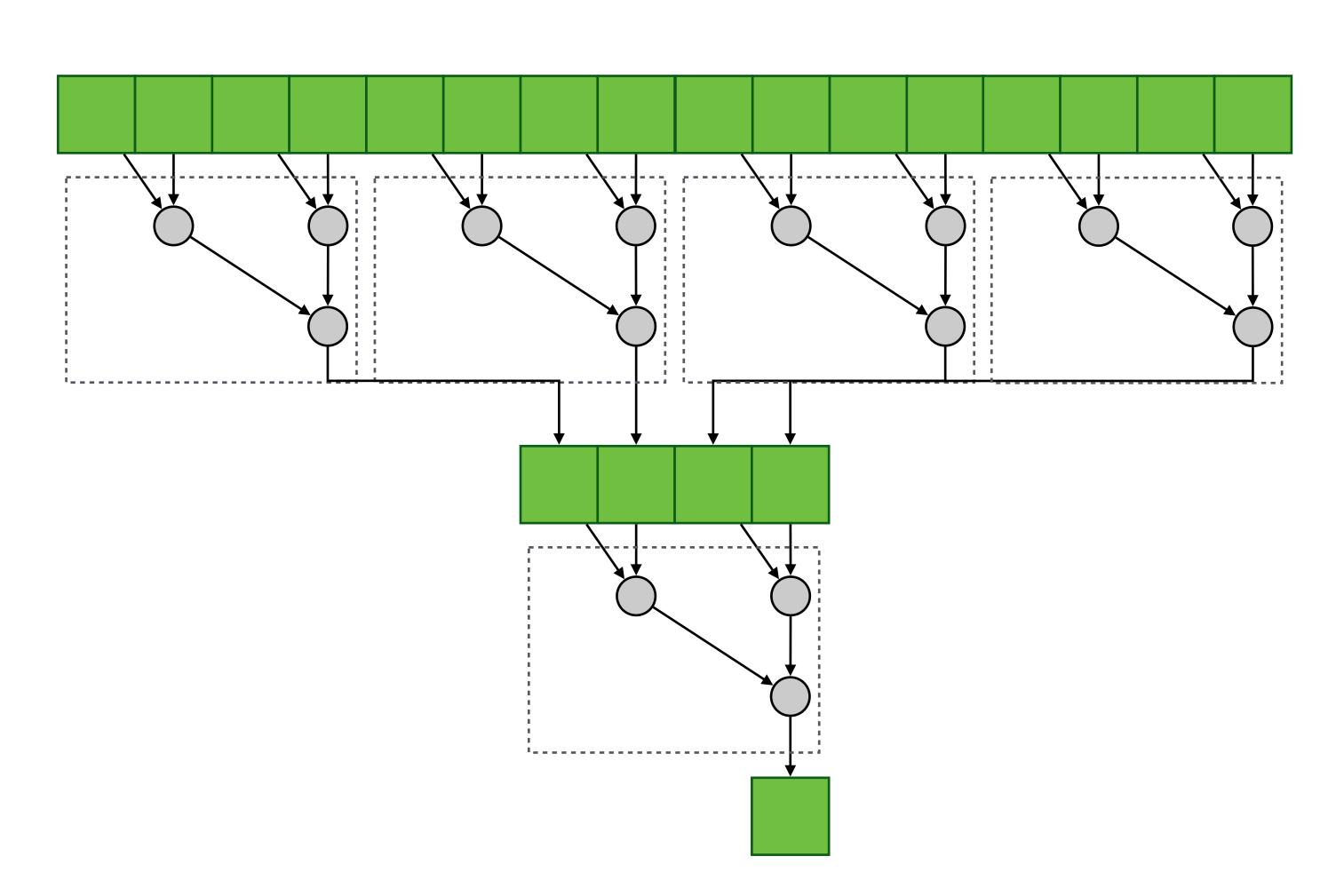
- Sum works in parallel because addition is associative
 - Sequential: (((x+y)+z)+w)
 - Recursive: ((x + y) + (z + w))
- Associative: change the position of the parentheses: $((x+y)+z) \equiv (x+(y+z))$
- Commutative: change the position of the variables: $x + y \equiv y + x$
 - Example:
 - Function composition is associative: $(f \cdot g) \cdot h \equiv f \cdot (g \cdot h)$
 - But not commutative: $(f \cdot g) \neq (g \cdot f)$

Associativity

- "Best" in sports is probably not associative (nor deterministic)
- Strictly speaking, computer arithmetic is not associative
 - Integer arithmetic can over/underflow
 - Floating-point values have limited precision
 - Example: 7-digit mantissa



- In practice, the input is split into multiple tiles (chunks)
- The tiles are distributed over the available cores (for CPUs) or streaming multiprocessors (GPUs)
- The results per tile are then reduced
 - With a sequential fold, or recursively with a parallel fold



- Reduction happens on multiple levels in the hardware
- For a GPU:
 - Each thread handles multiple elements, with a sequential loop
 - Each warp reduces the values of its threads
 - Each thread block reduces the values of its warps and writes the results to global memory
 - In a separate kernel, we reduce the results of all thread blocks

- For a CPU:
 - Each SIMD lane ...
 - Each thread ...

Afterwards, reduce the results of all threads

Example: dot product

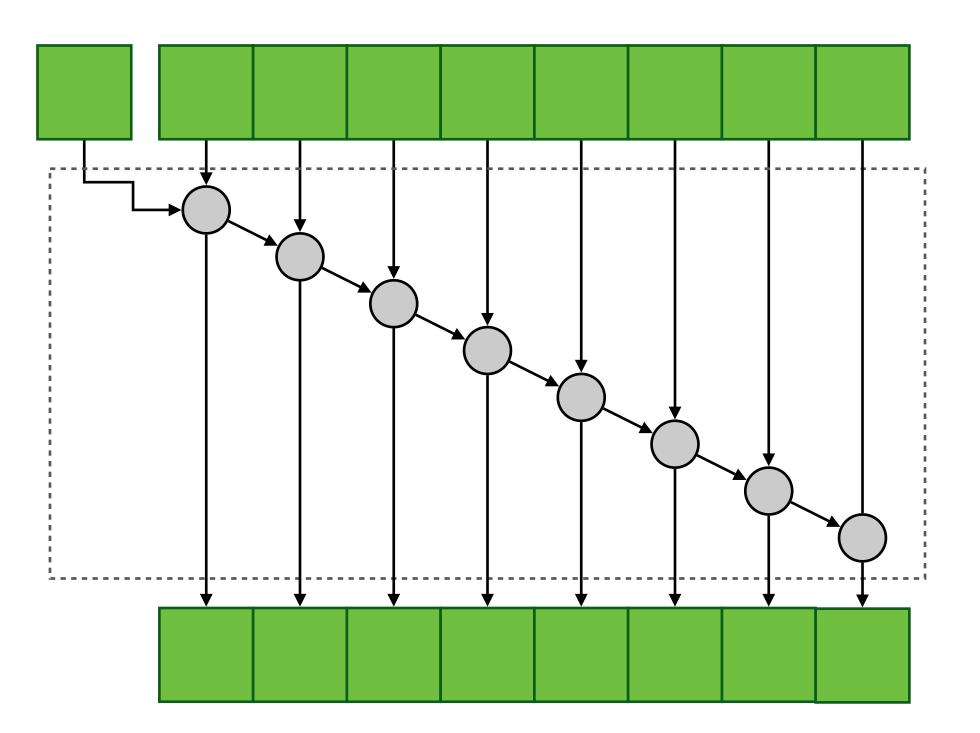
$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} a_i b_i$$

- The vector dot-product operation pair-wise multiplies the elements of two vectors, and then sums the result
 - A combination of zipWith followed by a fold
 - These operations can be fused to avoid storing the intermediate result
 - Array fusion is an important optimisation for collection-based programming models (c.f. loop fusion)

- Similar to reduce, but produces all partial reductions of the input
 - An important building-block in many parallel algorithms
 - Sorting algorithms, lexical comparison of strings, lexical analysis (parsing), evaluating polynomials, adding multiprecision numbers...
 - Trickier to parallelise than reduce
 - Two (main) variants: inclusive and exclusive
- Scan is an important building block in many parallel algorithms

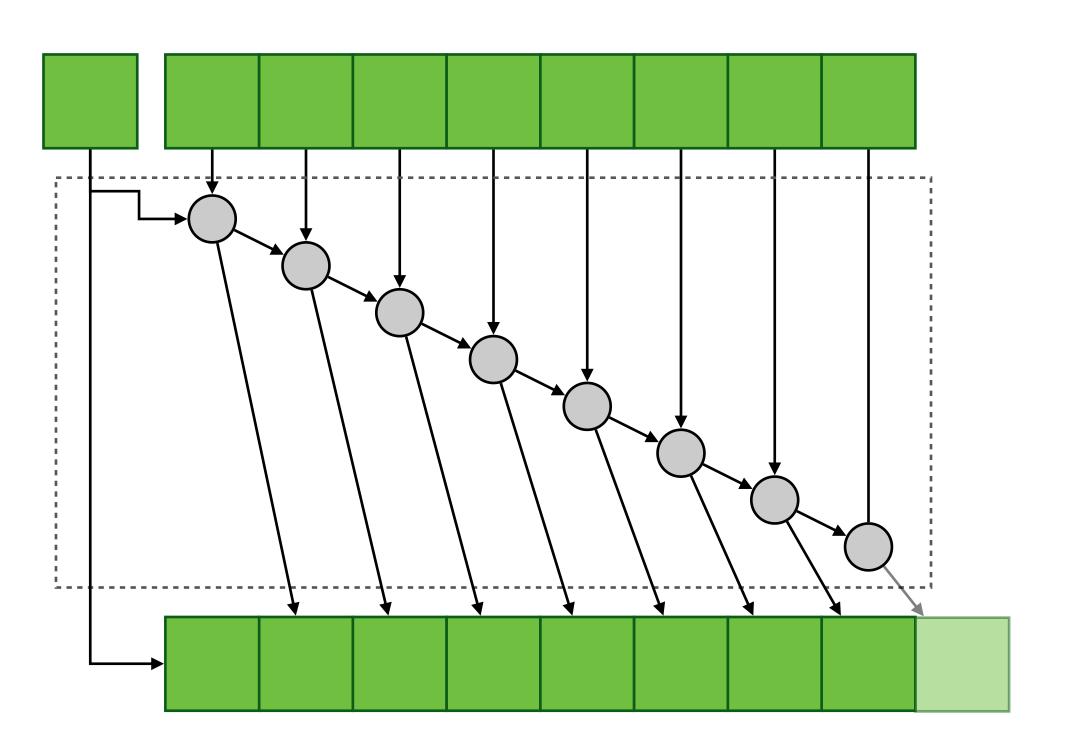
- Two variants: inclusive and exclusive
 - Inclusive scan includes the current element in the partial reduction
 - Exclusive scan includes all prior elements

```
// inclusive: scanl1
r = initial_value;
for (i = 0; i < n; ++i) {
   r = combine(r, x[i]);
   y[i] = r;
}</pre>
```



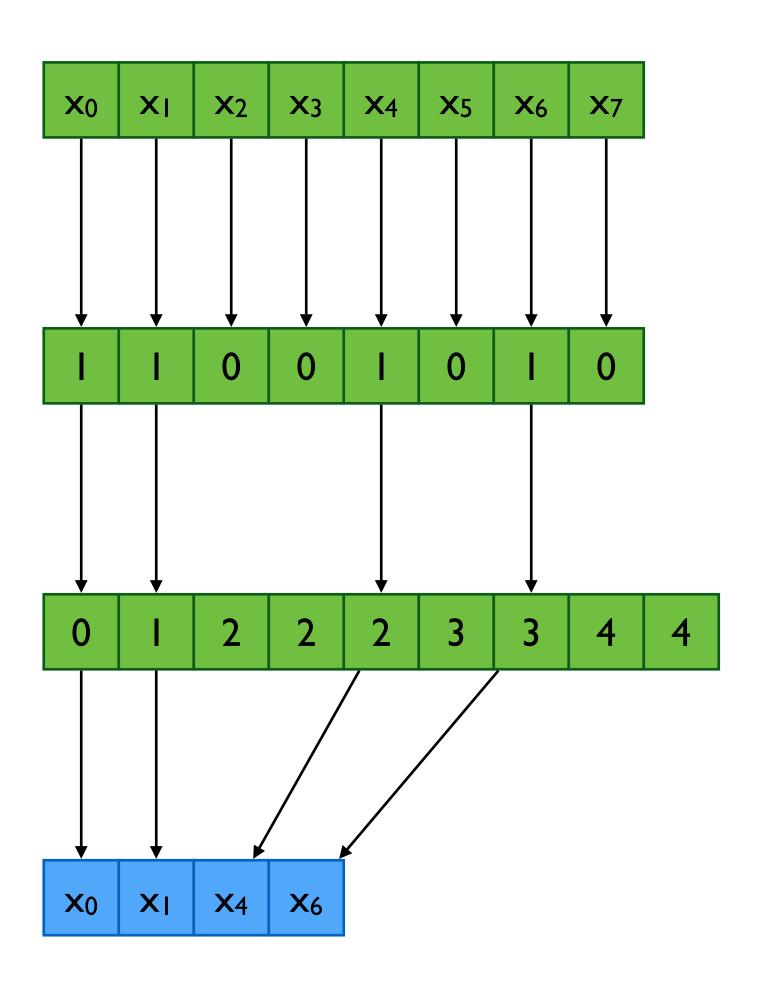
- Two variants: inclusive and exclusive
 - Inclusive scan includes the current element in the partial reduction
 - Exclusive scan includes all prior elements

```
// exclusive: scanl
r = initial_value;
for (i = 0; i < n; ++i) {
  y[i] = r;
  r = combine(r, x[i]);
}
// optionally: y[i] = r;</pre>
```



Example: filter (compact)

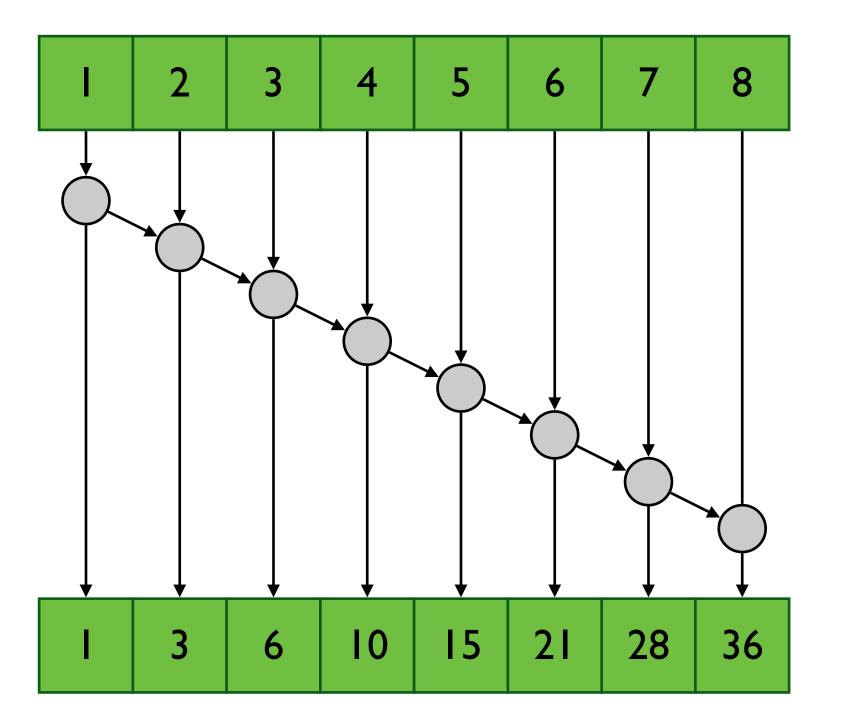
- Return only those elements of the array which pass a predicate
 - 1. *map* the predicate function over the values to determine which to keep
 - 2. exclusive *scan* the boolean flags to determine the output locations and number of elements to keep
 - 3. permute the values into the position given by (2) if (1) is true



Example: Integral Image

- Consider this inclusive prefix sum
 - We can use this result to calculate the sum of any interval of the input:

sum
$$[3..6] = ys[5] - ys[1] = 21 - 3 = 18$$



Example: Integral Image

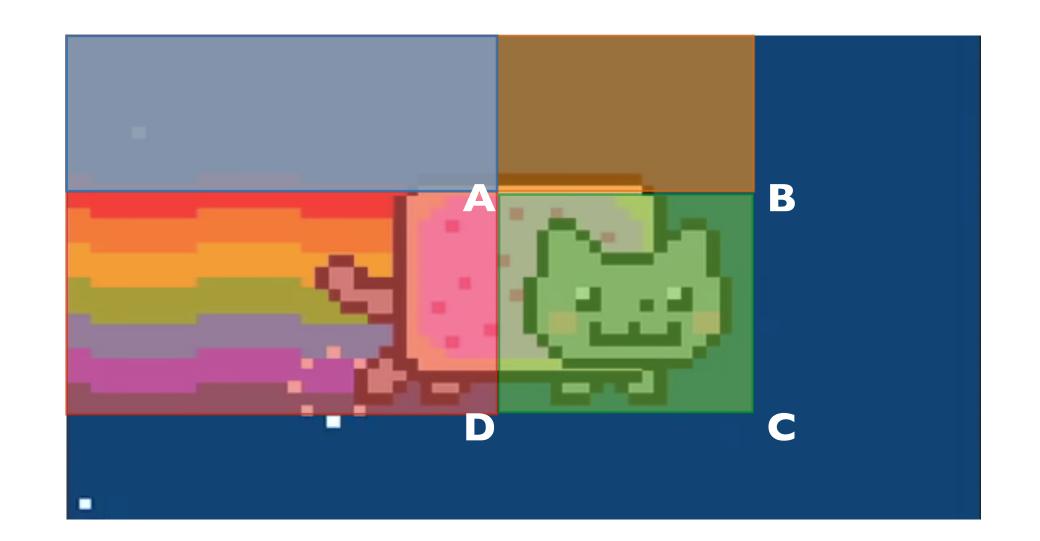
- This idea extends to two (or more) dimensions
 - Known as the integral image or summed area table

$$I(x,y) = \sum_{v=0}^{y} \sum_{u=0}^{x} i(u,v)$$

- Suppose I want to find the sum of the green region:

$$I_{ABCD} = I_C - I_D - I_B + I_A$$

- Can be used to implement a box filter in constant time
- Key component of the Viola-Jones face recognition algorithm



- In the prefix sum we produce all partial reductions of the input
 - That is, the reduction of every prefix

- The prefix sum you might also think of as a cumulative sum
- Variations for inclusive, exclusive, left, right, product, conjunction...
- Sequential calculation is a single sweep of n-1 additions

for (i = 1, i < n; ++i)
$$A[i] = A[i] + A[i-1]$$

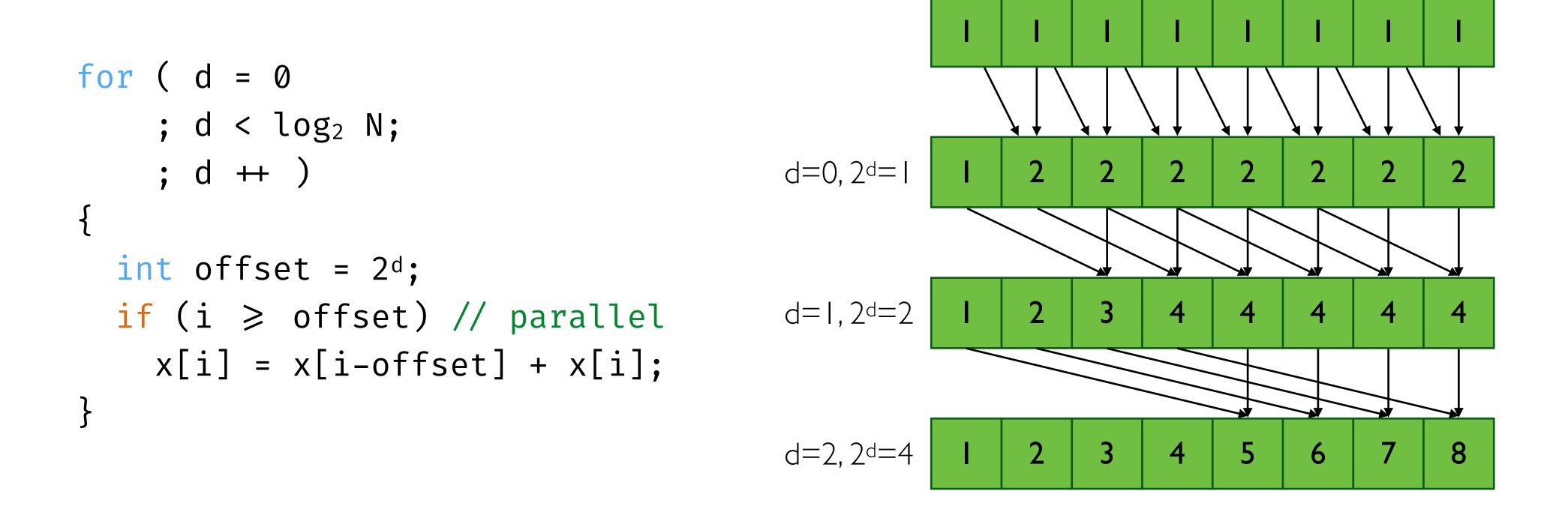
Example: how to parallelise prefix sum

- Split the data over two processors and perform a prefix sum individually on each part:

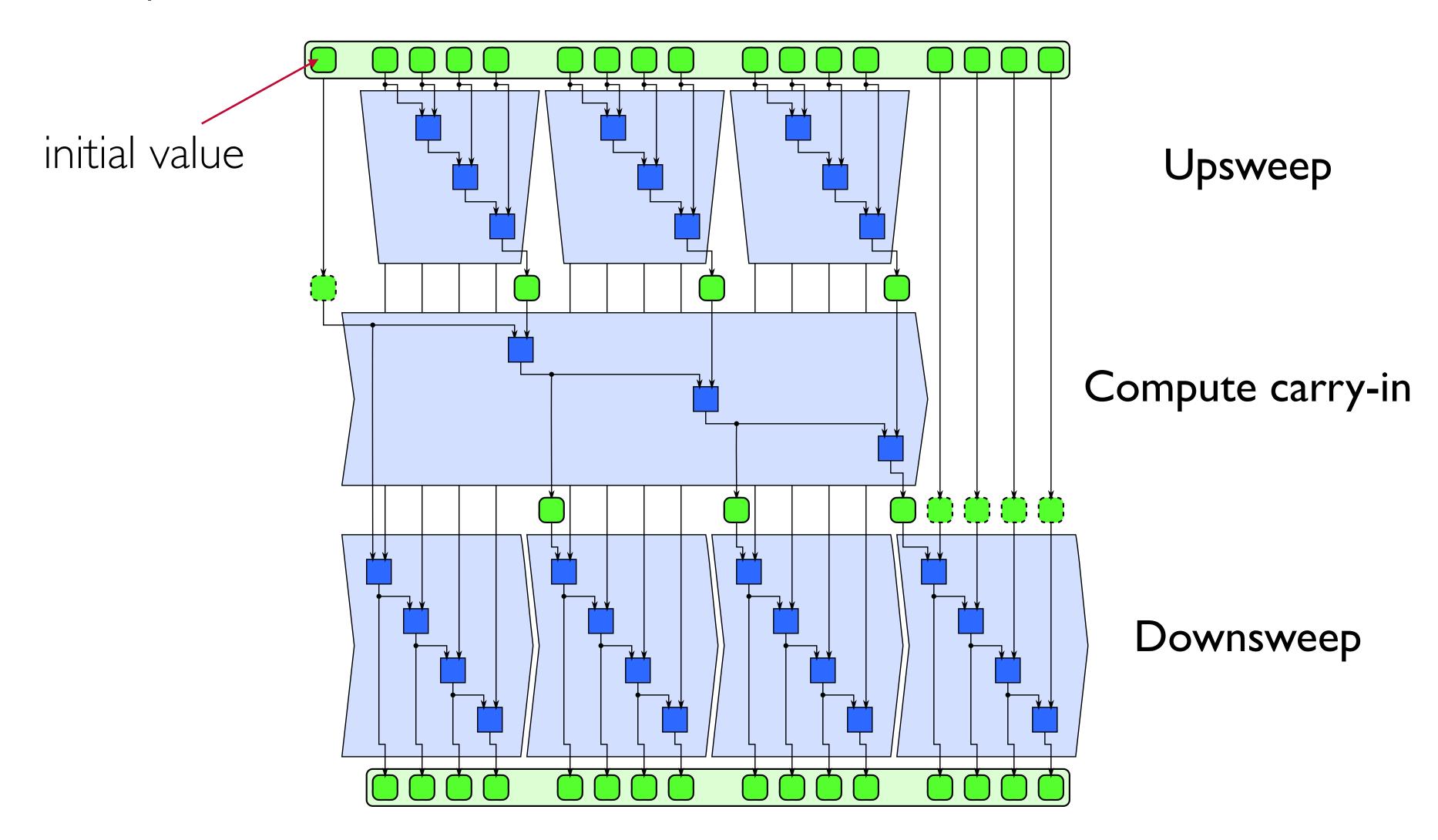
- The left part looks correct, but every element in the right part needs to be incremented by 19
- Luckily, this is the final result of the left side, which we just computed!

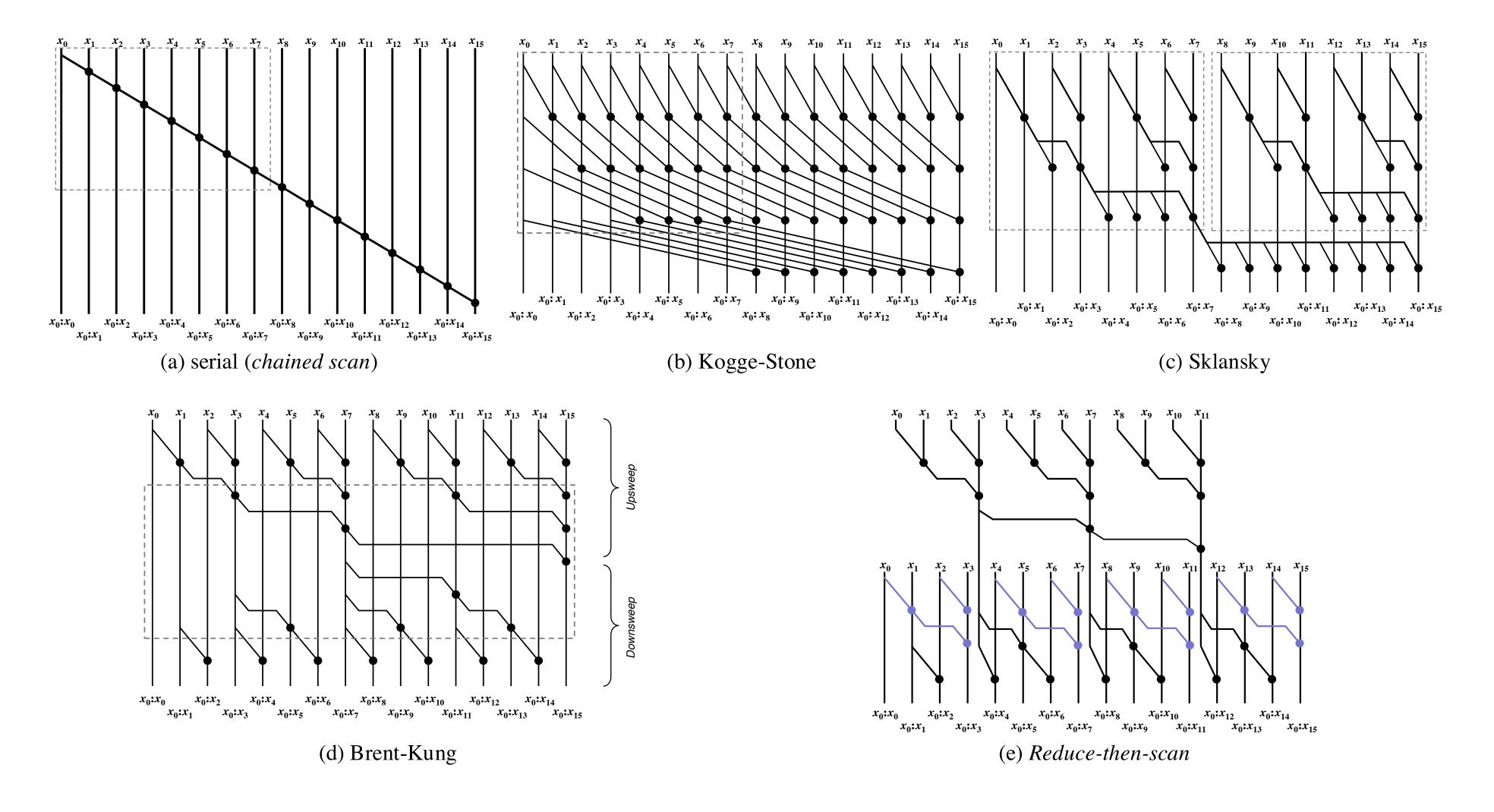
- Parallel scan split into tiles is classically done in three phases:
 - 1. Upsweep: Break the input into equally sized tiles, and reduce each tile
 - 2. Perform an exclusive scan of the reduction values
 - 3. Downsweep: Perform a scan of each tile, using the per-tile carry-in values computed in step 2 as the initial value

- Example: how to parallelise prefix sum (per-tile)
 - Here computed in SIMD (e.g. in a warp on the GPU)
 - Parallel scan [again] changes the order of operations



Three-phase tiled implementation of inclusive scan:





Three-phase scans on GPUs

- · Scans are (or used to be) implemented via three phases on GPUs
 - Kernel I performs a fold per block
 - Kernel 2 scans over the results per block (using a single thread block)
 - Kernel 3 performs a scan per block, using the prefix of that block computed in kernel 2
- Synchronization between blocks happens by splitting the program in multiple kernels
 - Kernel 2 only starts when all thread blocks of kernel 1 have finished
- It is advised to not perform synchronization between thread blocks within the same kernel
 - But...

Chained scans on GPUs

- · Chained scans use only one kernel, and do synchronize within the kernel
 - Each thread block does the following:
 - Read a tile of the array
 - Fold
 - Wait on prefix of previous tile
 - Share own prefix
 - Scan
 - Three-phase scans typically split the input in a fixed number of blocks, chained scans use fixed-size blocks as the data should fit in the registers of the threads of a thread block.

Chained scans on GPUs

- Chained scans go against the advice of independent thread blocks
- You have to be careful:
 - Don't use the hardware scheduler implement your own scheduling of thread blocks
 - Prevent memory reordering
 - Waiting on the prefix of the previous block can be a significant bottleneck
 - The Single-pass Parallel Prefix Scan with Decoupled Look-back optimizes this
- Chained may be faster than three-phase scans
 - as they read the input once instead of twice

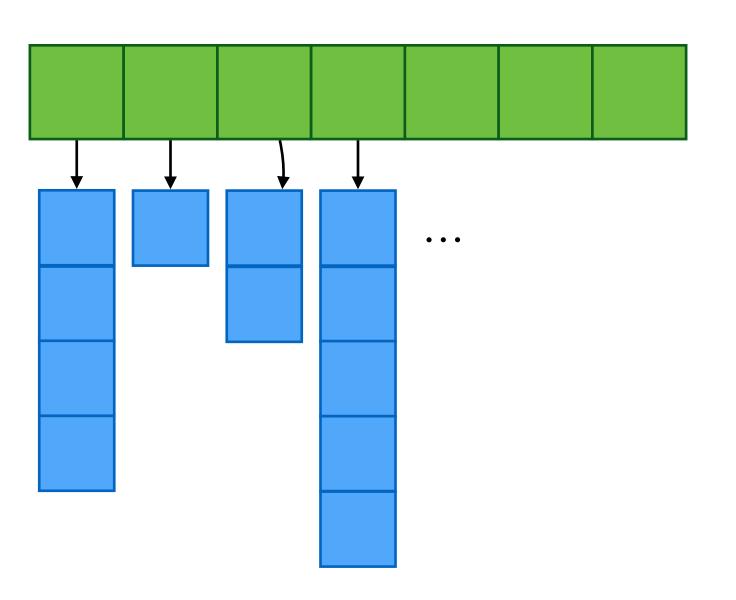
Flat data parallelism

- Widely used, well understood & supported approach to massive parallelism
 - Single point of concurrency
 - Easy to implement
 - Good cost model (work & span)
 - BUT! the "something" has to be sequential

```
__global__ void kernel( float* xs, float* ys, int n, ...)
{
   int idx = blockDim.x * blockIdx.x + threadIdx.x;
   if ( idx < n ) {
      // do something sequentially
      // but can not launch further parallel work!
   }
}</pre>
```

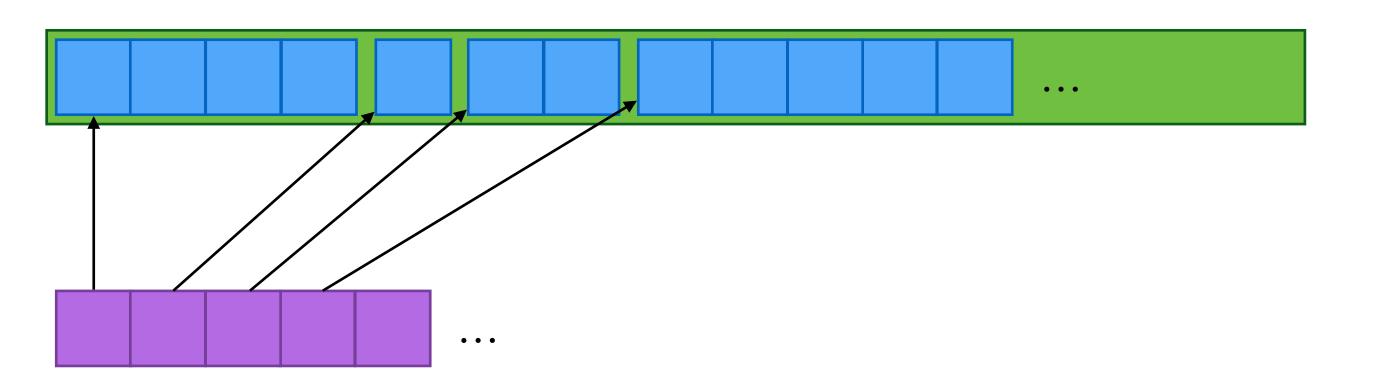
Nested data parallelism

- Main idea: allow the "something" to also be parallel
 - Now the parallelism structure is recursive and unbalanced
 - Still a good cost model
 - Wider range of applications: sparse arrays, adaptive methods (Barnes-Hut), divide and conquer (quicksort, quickhull), graph algorithms (shortest path, spanning tree)



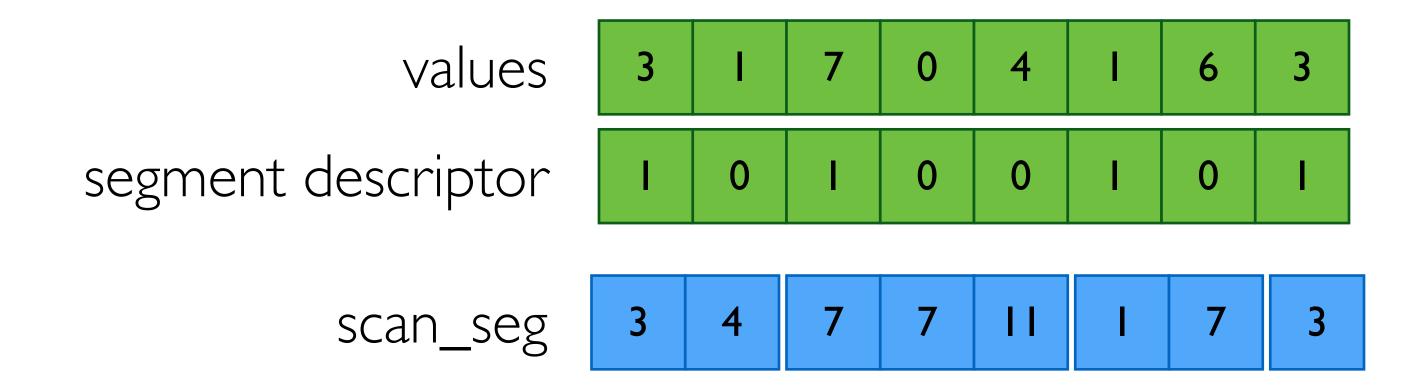
Nested data parallelism

- The flattening transformation
 - Concatenate the subarrays into one big flat array
 - Operate in parallel on the big array
 - A segment descriptor keeps track of where the sub-arrays begin
- Example: given an array of nodes in a graph, compute an array of their neighbors
 - For instance in findRequests for Delta-stepping
- The scan operation gives us a way to do this



Segmented scan

- We can also create segmented versions of collective operations like scan
 - Generalises scan to perform separate parallel scans on arbitrary contiguous partitions (segments) of the input vector
 - In particular useful for sparse and irregular computations



- Can be implemented via operator transform:

$$(f_x,x)\oplus^s (f_y,y)=(f_x|f_y, \text{ if } f_y \text{ then } y \text{ else } x\oplus y)$$

Segmented scan

- Lift a binary operator to a segmented version:
 - Can be implemented via operator transform
 - The lifted operator should be associative!
 - Concretely, if \oplus is associative, then \oplus s should also be associative

```
(f_x,x) \oplus^s (f_y,y) = (f_x|f_y, \text{ if } f_y \text{ then } y \text{ else } x \oplus y)
\text{segmented}
\vdots \text{ Elt a}
\Rightarrow (\text{Exp a} \to \text{Exp a} \to \text{Exp a})
\to (\text{Exp (Bool, a)} \to \text{Exp (Bool, a)} \to \text{Exp (Bool, a)})
\text{segmented op (T2 fx x) (T2 fy y)}
= \text{T2 (fx || fy )}
(\text{fy ? (y, op x y)})
```

Segment descriptors

- Segment descriptors describe where segments start, via
 - Segment lengths, or
 - Head flags
- Create the *head flags* array from segment lengths
 - The segment descriptor tells us the length of each segment
 - To use the operator from the previous slide, we need to convert this into a representation the same size as the input, with a True value at the start of each segment and False otherwise

```
mkHeadFlags :: Acc (Vector Int) → Acc (Vector Bool)
mkHeadFlags seg =
 let
     T2 offset len = scanl' (+) 0 seg
     falses = fill (I1 (the len)) False_
                   = fill (shape seg)
                                        True
     trues
 in permute const falses
      ( ix \rightarrow Just_ (I1 (offset!ix))) trues
```

Segmented scan

- What about other flavours of scan?
 - This approach works directly for inclusive segmented scan
 - The exclusive version is similar, but needs to fill in the initial element and take care of (multiple consecutive) empty segments

Conclusion

- Fold (reduction) and scan (prefix sum) can be executed in parallel
 - if the operator is associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- Prefix sum is a useful application in many (parallel) programming problems
 - Use to compute the book-keeping information required to execute nested data-parallel algorithms on flat data-parallel hardware (e.g. GPUs)

