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Task parallelism Data parallelism
» Explicit threads » Operate simultaneously on bulk data
» Synchronise via locks, messages, or STM * Implicit synchronisation
» Modest parallelism » Massive parallelism

» Hard to program - Easy to program



- We want to analyse the cost of a parallel algorithm

- We will consider asymptotic costs, to compare algorithms in terms of:
* How they scale to larger inputs
* How they scale (parallelise) over more cores
- Example: some sorting algorithms are O(n log n) and others O(n?) over the size of the input

- Example: RTX 4090 Ti has 16384 “cores” distributed over |28 multiprocessors



* When designing and analysing sequential algorithms, we use
the random access machine (RAM) model

- All locations in memory can be read from & written to in O(1)

- Summing an array can be done in linear ®(n) time

s =0
for (1
S

=0..n)
s + arr[1i]



« The parallel random access machine (PRAM) model is
analogous for talking about parallel algorithms

s =0
- Ignore details of synchronisation, communication, etc. parallel_for (i = 0..n)
S s + arr[1i]

- Shared memory machine with multiple attached processors (cores)

- Question: can we sum an array in parallel using this algorithm?



 Binary tree reduction of an array

For even 1:

arr[i] += arr[i+1]

For 1 a multiple of 4:

arr[i] += arr[i+2]

For 1 a multiple of 8:

arr[i1] += arr[i+4]

et cetera...




 Binary tree reduction of an array

- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes
O(log n) time

- The hardware cost is thus the number of processor P multiplied by how long you need them: O(n log n)

- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?
|. Can we go faster than O(log n) !

2. Can we have less hardware cost than O(n log n) ?



» Question 1: can we sum an array in sub-logarithmic time?

- Addition is a binary operator

- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2/ values

- S0, no matter what you do in parallel, you can not compute the full sum of » numbers in less than O(log n) time



» Question 1: proof by induction

- Induction hypothesis (IH): after i rounds values can only depend on at most 2! inputs

- 1=0:After zero rounds we haven’t done anything, so a number only “depends” on itself, so on one number which

is 20

- i+1:In this round you can combine two inputs from round i, which according to the IH can only depend on at

most 2/ + 2i = 2(i+D) inputs

- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why
(poly)logarithmic complexity O(logen) is the best possible outcome for parallel execution



« Question 2: can we reduce the hardware cost?

- Split the problem into two steps

- Phase |: divide the input over the P processors in groups of length n/P n/P
- Phase 2: use a binary tree reduction to calculate the total from
the P partial sums
- Total time 7, =n/p +log p log P

* If P<n/logn then phase one is dominant

e If P<n/logn then hardware cost is O(n)
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Work & Span

- We don’t want a different optimal calculation when executing for a different number of cores
- Use a description with two parameters, instead of just sequential time
- Let 7, be the running time with P processors available
- Then calculate two extremes: the work and span
* Work = T1: How long to execute on a single processor
* Span = T..: How long to execute on an infinite number of processors
- The longest dependence chain / critical path length / computational depth

- Example: O(log n) for summing an array
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* Program can be seen as a dependency graph of the calculation steps
- Work is the total number of nodes (calculations) in the whole graph

- Span is the number of nodes on the longest path (height of the graph)
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- If the work and span are known, you can estimate the time on P processors Tp with:
- max(work/P, span) < Tp <work/P + span

- The latter is at most double the former, so:

o Tpr = O(work/P + span)

- Question: what is the time to execute on |, 2, or 3 cores!
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- Brent proved that greedy scheduling is always two-optimal

- We say a step is ready when all its predecessors (dependencies) have been computed in previous rounds
- A greedy scheduler does as many steps in a round, but does not care which

- This is two-optimal:

Greedy scheduling takes at most twice as long as the optimal schedule

« Say Tr* is the time for the optimal schedule, then:
- Tp* >work/P, because even the best schedule still has P cores available

- Tp* > span, because all calculations on a path must be done sequentially
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» Greedy scheduling

- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times

- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the

span decreases by one

- The length of the greedy schedule is:

Ip = full + empty
<work/P + span
<Tp*+ Tp*
<2Tp*
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» Greedy scheduling

- Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal

- Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say

that Tp = max(work/P, span)
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» Greedy scheduling

|. As long as P <work/span the first term is

dominant and the calculation can be shortened by
adding more cores: work bound phase

2. If we have P > work/span then the runtime will

not get shorter by adding more cores: span bound
bhase
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* When comparing algorithms, low work is better
than high work, and low span is better than high
span

- What if algorithm one has better work complexity
Wi < W2

- But algorithm 2 has better span complexity s1 > s>

- Low span is theoretically nice, but since we don’t
have infinite processors in practice, be careful not

to lower span at the cost of too much extra work
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 Calculating work and span is the same as computing the time of an algorithm, as learned in the course data
structures

- Count the number of instructions/operations
- In the case of a loop, the cost of the body times the number of repetitions
- For recursion, use the Master Theorem
* For the analysis of parallel algorithms:
- You must do this process twice, once each for work and span
* Work is done as you would for a sequential algorithm

* Span takes the maximum of the branches which are performed in parallel
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» Pair-wise multiply the elements of two arrays

1  parallel for (i1 = 0..n)
2 rli] = x[1] * y[1]

» Work analysis:
- Doesn’t care about parallelism
- Line one says that this is done n times, so costs ®(n) steps
« Span analysis:
- The maximum cost of all the branches which are done in parallel

- Loop on line | is parallel, so take the longest path of steps: ®(1)
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» Add up all the numbers in an n x n matrix 4, with subtotals per row

1 parallel for (3 = 0..
s[j] =0
for (1 = @..n)

t =0
for (1 = 0..n)
t ==t + s[j]

N O o & WO DN

» Work analysis:

- Loop on line 3-4 costs O(n) steps
- Line one says this will be done 7 times, so line |-4 take ®(n?2) steps
- Line 6-7 take ®(n) steps

- Total is ®(n?) work

n)

slil = s[Jj] + Al1,]]
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» Add up all the numbers in an n x n matrix 4, with subtotals per row

1  parallel for (j = 0..n)
s[j] =0
for (1 = 0..n)
s[j] = s[j] + Al1,]]
t =0
for (1 = 0..n)
t ==t + s[j]

N O o & WO DN

« Span analysis:
- Loop line 3-4 is sequential, ®(n) steps
- Loop line | is parallel, so we take the longest path of steps from line |-4: ®(n)
- Line 5-7 still have ®(n) sequential steps

- Total span is ®(n) steps
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» Parallel algorithms can often use recursion effectively

- We want a method sum(A, p, q) that calculates the sum of all numbers in 4 in the range [p,q)

- Using recursion, pretend you already have a clever way to sum #n/2 numbers, which you want to use to calculate

the sum of 7 numbers

sum (A, p, q)
parallel for (1 = 0..(g-p)/2)
Bli] = Alp+2*1] + Al[p+2*1+1]

o &~ W N -

Sum (Br 07 (q-p)/Z)

- lgnore possibility of uneven number of inputs, base case of recursion, etc...
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Master Theorem

» The master theorem provides a solution to recurrence relations of the form

- For constants a > 1 and b > 1 and f asymptotically positive
T
I'(n) = aT A + f(n)

 The master theorem has three cases:

Recursion dominates Both contribute f dominates
if f(n) =0 (nlogb “=€) if f(n) =06 (nlogb *), then If f(n) = (nlogb aTe)
for some € > 0, T(n) =06 (nlogb “logn) for some € > 0, and
then T(Tb) = 0 (nlogb a) af (n/b) <cf (n)

for some c <1

for all n sufficiently large,

thenT'(n) = O (f (n))

https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)
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https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

» The master theorem provides a solution to recurrence relations of the form

- For constants a > 1 and b > 1 and f asymptotically positive

T(n)=al (%) + f(n)

» Examples:
- Merge sort: I(n)y=2T(n/2) +n
Then case 2 gives (a=2, b=2): 1(n) = O(n log n)
- Traversing a binary tree: 1(n) =21(n/2) + O(1)

Then case | gives (a=2, b=2,e=1):. 1T(n)=0O(n)
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» Parallel algorithms can often use recursion effectively

1
2
3
/i
5

sum (A, p, q)
parallel for (1 = 0..(g-p)/2)
Bli] = Alp+2*1] + A[p+2*1+1]

sum (Br 07 (q_p)/Z)

» Work analysis:
- Line 3 is O(1)
- Line 2 says it is done n/2 times, so ®(n/2)
- Line 3 is a recursive call on #n/2 inputs. Call the work W(n) and we get W(n) = W(n/2) + ®(n/2)

- Solve with the master theorem (a=1, b=2, ¢=1, case 3): W(n) = O(n)
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Example: fold (2)

» Parallel algorithms can often use recursion effectively

sum (A, p, q)
(1 =0..(g-p)/2)
Bli] = Alp+2*1] + A[p+2*1+1]

o &~ W N -

sum (B, @, (g-p)/2)
« Span analysis:
- Line 2-3 have constant span because they are done in parallel
- This means the span S(n) = S(n/2) + O(1)
- Solve with the master theorem (a=1, b=2, case 2): S(n) = O(log n)

» Conclusion: we can sum n numbers in linear work and logarithmic span
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Example: scan (1)

 Parallel implementation of prefix sum

input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

- Split the data over two processors and perform a prefix sum individually on each part

split: [3,4, 4, 4, 4] (3,5, 4, 5]
left/right result: [3,7,11,15,19] [3,8,12,17]

P | P2
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» Example: recursive implementation of prefix sum:

orefix_sum(A, m+1, q)

1  prefix_sum (A, p, q)

2 // base case

3

L m = (p+q)/2

5 orefix_sum(A, p, m)
6

/

8

A[i] = A[1i] + A[m]

- Span (a=1, b=2,case 2): S(n)=S(n/2)+ 1 =0(log n)

- Work (a=2, b=2, case 2): W(n) =2 W(n/2) + n = 0O(n log n)

In parallel

harallel for (1 = m+1l..q)
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- The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear

O(n) time: the overhead is logarithmic
- A parallel algorithm is:
* Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

* Optimal when the span is poly-logarithmic and the overhead is constant
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Example: scan (2)

» Let’s try a different approach to parallelising scan:

input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

- Pair up neighbours at the even positions:
[ 7, 8, 7, 9 ]
- Perform a prefix sum of these values:

[ 7, 15, 22, 31 ]

- At the uneven positions add the input value at that position to the output of the previous step on the left:

[3,7,11,15,19,22,27,31,36]
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- We can implement this recursively by keeping track of a hop distance

1
2
3
/i
5
6

prefix_sum (A, d)
parallel for (1 = even multiple of d)
A[i] += A[i-d]

orefix sum(A, 2*d)

harallel for (1 = uneven multiple of d)
A[i] += A[i-d]

* Work:

- Algorithm does n-1 additions and one half-size prefix sum

- Master theorem (a=1, b=2, e=1, case 3): W(n) = W(n/2) + n = O(n)
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- We can implement this recursively by keeping track of a hop distance

1
2
3
/i
5
6

prefix_sum (A, d)
parallel for (1 = even multiple of d)
A[i] += A[i-d]

orefix sum(A, 2*d)

harallel for (1 = uneven multiple of d)
A[i] += A[i-d]

* Span:
- Additions are done in two (parallel) groups, before and after the prefix sum
- Master theorem (a=1, b=2, case 2): S(n) =1+ S(n/2) + 1 = O(log n)

- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally
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sSummary

» Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms
- Work: total number of steps (computations)
- Span: longest path of steps that need to be done sequentially (steps)

» The PRAM model ignores practical issues such as memory access latency
- Assume uniform costs for all memory access

* Time to perform something on P cores: Tp = ®@(work/P + span)

- Compare to the formulation by Amdhal
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» Thursday: Revision lecture

- This will consist of the last lectures presented simultaneously
(it is up to you to parallelise your brain before then)

- Send me questions/topics to cover via lTeams!
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