W
= ¥ = Utrecht University

NS

B3CC: Concurrency

| 6: Conclusion

lvo Gabe de Wolff

Final exam!

The dog is...
A) Sitting B) Standing C) Laying down

- Final exam
- Tuesday 30 January @ 13:30
- Olympos Hal 2
- Mix of multiple choice and open questions

- Covers material from second half of the course:

* From lecture 9 (Parallelism) through lecture 15 (Work & Span)
- You don’t need to write Accelerate code
* But you may be asked to design a parallel algorithm in terms of the parallel patterns

- Remindo has a calculator, no physical calculators allowed

https://www.instagram.com/p/C/ZIPjkijx;1

https://www.instagram.com/p/CZIPjkijxj1

Brief course summary

Parallelism
&
Concurrency

50 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 10%)

(Watts)

SN

1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

 Three kinds of code:

- Gameplay simulation

* Models the state of the game world as interacting entities
- Numeric computation

* Physics, collision detection, path finding, scene graph traversal, etc.
- Shading

* Pixel & vertex attributes; runs on the GPU

Sekiro: Shadows Die Twice, FromSoftware 6

How?

Game Numeric
Simulation Computation

Shading

Languages C++, scripting C++ GC, HLSL

CPU Budget 0% 90% n/a

Lines of Code 250.000 250.000 10.000

FPU Usage 0.5 GFLOPS 5 GFLOPS 500 GFLOPS

Concurrency/
Parallelism

STM SIMD GPU

Tim Sweeney: The Next Mainstream Programming Language, POPL 2006

P P2 P3

Task parallelism Data parallelism

How the parallel patterns we have talked
about map to GPU code

Difference between CPU and GPU

What each is designed for; strengths and

weaknesses

What the GPU programming model
(CUDA) is designed for

y
M N & ‘.
. =T R ey
= -
4,4 HiT™ -
Jausras QIR | HeaE
Y o .
ol e 3 F X
12 Sorse il RIS
- * v LI
b 4 3% 1 =08 1 3 |
e ¥ . 3
= v ll' 5
2 J 4
: ; I
-
!

sHiElE

’ HH

.........

=
‘"‘]H

Tow

1

R J,
3 | -
.
' e

s~ i 3
4 l‘. .ﬂyl "-.
N y .
.__._.__.—.
.
o) w0 “ . :

N
3 -
2

...—S J__

U o I o
M T

l“r-.-- e ll I]
2= N 1‘,‘_.

| - e :

a8

w’
uﬁ rm

Afy y—

Ao

o OO LTS
- £3 %%
l! T—ﬂ- Y..

I[.

HCERRRR e

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk) ‘

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

128KB L1 Data Cache / Shared Memory

Tex

RT CORE
2nd Generation

Tex

* Apply a function to every element of an array, independently

 This one is (hopefully) straightforward...

10

* A map with access to the surrounding neighbourhood
- What are the difficulties/limitations?
- The ghost region (halo) and how/why to use it

- Optimisations (tiling, strip mining, etc.)

11

- Use a different kernel for the interior and border regions

- In the gaussian blur example of a 512x512 pixel image, 98% of the pixels do not require in-bounds checks
» Optimise data locality & reuse through tiling

- Strip mining is an optimisation that groups elements in a way that avoids redundant memory access and aligns
accesses with cache lines

4 x (5 reads + | write) |4 reads + 4 writes

12

Stencil optimisations

Without tiling With tiling

» When handling row O, row 1 is loaded in cache. - Previously loaded row is still in cache

» First values of row 1 may already be out of cache,
when handling row 1

» Tile width is usually a power of 2,
on GPUs often the warp size (32)

- Reduce an array to a summary value

» How to implement this in parallel
- What kinds of restrictions are necessary!?

- What additional restrictions can be leveraged to improve it further?

14

» All partial reductions of an array

« Varieties

- Inclusive vs. exclusive etc.
 Parallel implementation

- Restrictions, etc.

15

 Parallel random read

 Implications for memory access patterns
- Optimisations for special cases (e.g. transpose), like tiling

- Implications for the GPU, caches, etc.

16

 Parallel random write

- How to handle collisions in the index permutation function
- Performance implications of collisions, false sharing, etc.

- Scatter vs. gather

https://en.wikipedia.org/wiki/False sharing 17

https://en.wikipedia.org/wiki/False_sharing

Patterns: gather vs scatter

« Random reads (gather) are slower than structured reads

- Random writes (scatter) are slower than structured writes

 This problem is larger for scatter,
as the processor needs to perform more synchronization between cores

* In general, use gather instead of scatter if both are possible

18

* You should be able to:

- Give examples for each pattern

- Recognise these patterns and where they can be used
* e.g.given a problem description, give an implementation in terms of these patterns
* Use Accelerate code, pseudocode or an explanation in text

* Especially for the latter, make sure your explanation is concrete

19

- We analysed the performance of algorithms using the work and span:

- Work = T;

How long to execute on a single processor

- Span = T

How long to execute on an infinite number of processors
* The longest dependence chain / critical path length / computational depth

* Example: O(log n) for summing an array

20

- The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear

O(n) time: the overhead is logarithmic
- A parallel algorithm is:
* Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

* Optimal when the span is poly-logarithmic and the overhead is constant

21

Master Theorem

» The master theorem provides a solution to recurrence relations of the form

- For constants a > 1 and b > 1 and f asymptotically positive
T
I'(n) = aT A + f(n)

 The master theorem has three cases:

Recursion dominates Both contribute f dominates
if f(n) =0 (nlogb “=€) if f(n) =06 (nlogb *), then If f(n) = (nlogb aTe)
for some € > 0, T(n) =06 (nlogb “logn) for some € > 0, and
then T(Tb) = 0 (nlogb a) af (n/b) <cf (n)

for some c <1

for all n sufficiently large,

thenT'(n) = O (f (n))

https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)

22

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

* You should be able to:

- Compute the work and span given a problem description/code
- Compare parallel algorithms
* Efficient & optimal

* Parallel speedup (Amdhal vs. Gustafson-Baris)

23

Questions?

24

* Please fill out the Thermometer survey!

- All constructive feedback is welcome

- https://caracal.uu.nl/35916/Respond

25

https://caracal.uu.nl/35916/Respond

Photo by Claudio Piccolo

https://mymodernmet.com/claudio-piccoli-photos-of-dogs-in-mid-air/

