
4.3 The Netchange Algorithm 123

Theorem 4.13 The algorithm of Chandy and Misra computes minimum-
hop routing tables by exchanging O(N2) messages and O(N2W) bits per
channel, and O(N2 · |E|) messages and O(N2 · |E| ·W) bits in total.

An advantage of the algorithm of Chandy and Misra over that of Merlin
and Segall is its simplicity, its smaller space complexity, and its lower time
complexity.

4.3 The Netchange Algorithm

Tajibnapis’ Netchange algorithm [Taj77] computes routing tables that are
optimal according to the “minimum-hop” measure. The algorithm can be
compared to the Chandy–Misra algorithm, but maintains additional infor-
mation that allows the tables to be updated with only a partial recom-
putation after the failure or repair of a channel. The presentation of the
algorithm in this section follows Lamport [Lam82]. The algorithm relies on
the following assumptions.

N1. The nodes know the size of the network (N).
N2. The channels satisfy the fifo assumption.
N3. Nodes are notified of failures and repairs of their adjacent channels.
N4. The cost of a path equals the number of channels in the path.

The algorithm can handle the failure and repair or addition of channels,
but it is assumed that a node is notified when an adjacent channel fails or
recovers. The failure and recovery of nodes is not considered; instead it is
assumed that the failure of a node is observed by its neighbors as the failure
of the connecting channel. The algorithm maintains in each node u a table
Nbu[v], giving for each destination v a neighbor of u to which packets for v

will be forwarded. It cannot be required that the computation of these tables
terminates within a finite number of steps in all cases because the repeated
failure or repair of channels may ask for recomputation indefinitely. The
requirements of the algorithm are as follows.

R1. If the topology of the network remains constant after a finite number
of topological changes, then the algorithm terminates after a finite
number of steps.

R2. When the algorithm terminates the tables Nbu[v] satisfy

(a) if v = u then Nbu[v] = local ;
(b) if a path from u to v 6= u exists then Nbu[v] = w, where w is

the first neighbor of u on a shortest path from u to v;
(c) if no path from u to v exists then Nbu[v] = udef .

Use outside Utrecht University and photocopying are prohibited.

124 4 Routing Algorithms

var Neighu : set of nodes ; (* The neighbors of u *)
Du : array of 0.. N ; (* Du[v] estimates d(u, v) *)
Nbu : array of nodes ; (* Nbu[v] is preferred neighbor for v *)
ndisu : array of 0.. N ; (* ndisu[w, v] estimates d(w, v) *)

Initialization:
begin forall w ∈ Neighu, v ∈ V do ndisu[w, v] := N ;

forall v ∈ V do
begin Du[v] := N ; Nbu[v] := udef end ;

Du[u] := 0 ; Nbu[u] := local ;
forall w ∈ Neighu do send 〈mydist, u, 0 〉 to w

end

Procedure Recompute (v):
begin if v = u

then begin Du[v] := 0 ; Nbu[v] := local end
else begin (* Estimate distance to v *)

d := 1 + min{ndisu[w, v] : w ∈ Neighu} ;
if d < N then

begin Du[v] := d ;
Nbu[v] := w with 1 + ndisu[w, v] = d

end
else begin Du[v] := N ; Nbu[v] := udef end

end ;
if Du[v] has changed then

forall x ∈ Neighu do send 〈mydist, v, Du[v] 〉 to x
end

Algorithm 4.8 The Netchange algorithm (Part 1, for node u).

4.3.1 Description of the Algorithm

Tajibnapis’ Netchange algorithm is given as Algorithms 4.8 and 4.9. The
steps of the algorithm will first be motivated by an informal description
of the operation of the algorithm, and subsequently the correctness of the
algorithm will be proved formally. For sake of clear exposition the modeling
of topological changes is simplified as compared to [Lam82] by assuming that
the notification of the change is processed simultaneously in the two nodes
affected by the change. It is indicated in Subsection 4.3.3 how asynchronous
processing of these notifications is treated.

The selection of a neighbor to which packets for destination v will be
forwarded is based on estimates of the distance of each node to v. The
preferred neighbor is always the neighbor with the lowest estimate of this
distance. Node u maintains an estimate Du[v] of d(u, v) and estimates
ndisu[w, v] of d(w, v) for each neighbor w of u. The estimate Du[v] is

c© Cambridge University Press, 1994.

4.3 The Netchange Algorithm 125

Processing a 〈mydist, v, d 〉 message from neighbor w:
{ A 〈mydist, v, d 〉 is at the head of Qwv }
begin receive 〈mydist, v, d 〉 from w ;

ndisu[w, v] := d ; Recompute (v)
end

Upon failure of channel uw:
begin receive 〈 fail, w 〉 ; Neighu := Neighu \ {w} ;

forall v ∈ V do Recompute (v)
(* It suffices actually to do this for v s.t. Nbu[v] = w *)

end

Upon repair of channel uw:
begin receive 〈 repair, w 〉 ; Neighu := Neighu ∪ {w} ;

forall v ∈ V do
begin ndisu[w, v] := N ;

send 〈mydist, v, Du[v] 〉 to w
end

end

Algorithm 4.9 The Netchange algorithm (Part 2, for node u).

computed from the estimates ndisu[w, v], and the estimates ndisu[w, v] are
obtained via communication with the neighbors.

The computation of the estimates Du[v] proceeds as follows. If u = v

then d(u, v) = 0 so Du[v] is set to 0 in this case. If u 6= v, a shortest path
from u to v (if such a path exists) consists of a channel from u to a neighbor,
concatenated with a shortest path from this neighbor to v, and consequently

d(u, v) = 1 + min
w∈Neighu

d(w, v).

Following this equation, node u 6= v estimates d(u, v) by applying this
formula to the estimated values of d(w, v), found in the tables as ndisu[w, v].
As there are N nodes, a minimum-hop path has length at most N − 1. A
node may suspect that no path exists if it computes an estimated distance
of N or more; the value N is used in the table to represent this.

The algorithm requires a node to have an estimate of its neighbors’ dis-
tances to v. These are obtained from these nodes because they communicate
them in 〈mydist, ., . 〉 messages as follows. If node u computes the value
d as an estimate of its distance to v (Du[v] = d), this information is sent
to all neighbors in a message 〈mydist, v, d 〉. Upon receipt of a message
〈mydist, v, d 〉 from neighbor w, u assigns ndisu[w, v] the value d. As a
result of a change in ndisu[w, v] u’s estimate of d(u, v) can change and

Use outside Utrecht University and photocopying are prohibited.

126 4 Routing Algorithms

therefore the estimate is recomputed every time the ndisu table changes. If
the estimate indeed changes, to d′ say, this is of course communicated to the
neighbors using 〈mydist, v, d′ 〉 messages.

The algorithm reacts to failures and repairs of channels by modifying
the local tables, and sending a 〈mydist, ., . 〉 message if distance-estimates
change. We assume that the notification that nodes receive about channel
ups and downs (assumption N3) is in the form of 〈 fail, . 〉 and 〈 repair, . 〉
messages. The channel between nodes u1 and u2 is modeled by two queues,
Qu1u2 for the messages from u1 to u2 and Qu2u1 for the messages from u2 to
u1. When a channel fails these queues are removed from the configuration
(effectively causing all messages in both queues to be lost) and the nodes at
both ends of the channel receive a 〈 fail, . 〉 message. If the channel between
u1 and u2 fails, u1 receives a 〈 fail, u2 〉 message and u2 receives a 〈 fail, u1 〉
message. When a channel is repaired (or a new channel is added to the
network) two empty queues are added to the configuration and the two
nodes connected by the channel receive a 〈 repair, . 〉message. If the channel
between u1 and u2 comes up u1 receives a 〈 repair, u2 〉 message and u2

receives a 〈 repair, u1 〉 message.
The reaction of the algorithm to the failures and repairs is as follows.

When the channel between u and w fails, w is removed from Neighu and
vice versa. The distance estimate for each destination is recomputed and,
of course, sent to all remaining neighbors if it has changed. This is the
case if the best route previously was via the failed channel and there is
no other neighbor w′ with ndisu[w′, v] = ndisu[w, v]. When the channel is
repaired (or a new channel is added) w is added to Neighu, but u has as
yet no estimate of the distance d(w, v) (and vice versa). The new neighbor
w is immediately informed about Du[v] for all destinations v (by sending
〈mydist, v, Du[v] 〉 messages. Until u receives similar messages from w, u

uses N as an estimate for d(w, v), i.e., it sets ndisu[w, v] to N .

Invariants of the Netchange algorithm. We shall prove a number of
assertions to be invariants; the assertions are given in Figure 4.10. The
assertion P (u, w, v) states that if u has finished processing 〈mydist, v, . 〉
messages from w then u’s estimate of d(w, v) equals w’s estimate of d(w, v).
Let the predicate up(u, w) be true if and only if a (bidirectional) channel
between u and w exists and is operating. The assertion L(u, v) states that
u’s estimate of d(u, v) is always in agreement with u’s local knowledge, and
Nbu[v] is set accordingly.

The computation of the algorithm terminates when there are no more
messages of the algorithm in transit in any channel. These configurations

c© Cambridge University Press, 1994.

4.3 The Netchange Algorithm 127

P (u, w, v) ≡
up(u, w) ⇐⇒ w ∈ Neighu (1)

∧ up(u, w) ∧Qwu contains a 〈mydist, v, d 〉 message
⇒ the last such message satisfies d = Dw[v] (2)

∧ up(u, w) ∧Qwu contains no 〈mydist, v, d 〉 message
⇒ ndisu[w, v] = Dw[v] (3)

L(u, v) ≡
u = v ⇒ (Du[v] = 0 ∧Nbu[v] = local) (4)

∧ (u 6= v ∧ ∃w ∈ Neighu : ndisu[w, v] < N − 1)
⇒ (Du[v] = 1 + min

w∈Neighu

ndisu[w, v] = 1 + ndisu[Nbu[v], v]) (5)

∧ (u 6= v ∧ ∀w ∈ Neighu : ndisu[w, v] ≥ N − 1)
⇒ (Du[v] = N ∧Nbu[v] = udef) (6)

Figure 4.10 The invariants P (u, w, v) and L(u, v).

are not terminal for the whole system, because the system’s computation
may later continue, starting with a channel failure or repair (to which the
algorithm must react). We shall call message-less configurations stable, and
define the predicate stable by

stable ≡ ∀u, w : up(u, w) ⇒ Qwu contains no 〈mydist, ., . 〉 message.

It must be assumed that initially the variables Neighu correctly reflect the
existence of working communication channels, i.e., that (1) holds initially.
To prove the invariance of the assertions three types of transition must be
considered.

(1) The receipt of a 〈mydist, ., . 〉 message. The entire execution of the
resulting code fragment is assumed to occur atomically and is con-
sidered a single transition. Note that in this transition a message is
received and possibly a number of messages is sent.

(2) The failure of a channel and the processing of a 〈 fail, . 〉 message by
the nodes at both ends of the channel.

(3) The repair of a channel and the processing of a 〈 repair, . 〉 message
by the two connected nodes.

Lemma 4.14 For all u0, w0, and v0, P (u0, w0, v0) is an invariant.

Proof. Initially, i.e., after the execution of the initialization procedure by
each node, (1) holds by assumption. If initially we have ¬up(u0, w0), (2) and
(3) trivially hold. If initially we have up(u0, w0), then ndisu0 [w0, v0] = N .
If w0 = v0 then Dw0 [w0] = 0 but a message 〈mydist, v0, 0 〉 is in Qw0u0 , so

Use outside Utrecht University and photocopying are prohibited.

128 4 Routing Algorithms

(2) and (3) are true. If w0 6= v0 then Dw0 [v0] = N and no message is in
the queue, which also implies that (2) and (3) hold. We consider the three
types of state transition mentioned above in turn.

Type (1). Assume that u receives a 〈mydist, v, d 〉 message from w.
This causes no topological change and no change in the Neigh sets, hence
(1) remains true. If v 6= v0 this receipt does not change anything in
P (u0, w0, v0).
If v = v0, u = u0, and w = w0 the value of ndisu0 [w0, v0] may change.
However, if another 〈mydist, v0, . 〉 message is still in the channel then
the value of this message continues to satisfy (2), so (2) is preserved
and (3) also because its premise is false. If the received message was
the last one in the channel of this type then d = Dw0 [v0] by (2), which
implies that the conclusion of (3) becomes true and (3) is preserved. The
premise of (2) becomes false, so (2) is preserved.
If v = v0, u = w0 (and u0 is a neighbor of u) the conclusion of (2) or (3)
may be falsified if the value Dw0 [v0] changes as a result of the execution
of Recompute(v) in w0. In this case, however, a message 〈mydist, v0, . 〉
with the new value is sent to u0, which implies that the premise of (3) is
falsified, and the conclusion of (2) becomes true, so both (2) and (3) are
preserved. This is also the only case in which a 〈mydist, v0, . 〉 message
is added to Qw0u0 , and it always satisfies d = Dw0 [v0].
If v = v0 and u 6= u0, w0 nothing changes in P (u0, w0, v0).

Type (2). Assume that channel uw fails.
If u = u0 and w = w0 this failure falsifies the premise of (2) and (3) so
these clauses are preserved. (1) is preserved because w0 is removed from
Neighu0

and vice versa. The same happens if u = w0 and w = u0.
If u = w0 but w 6= u0 the conclusion of (2) or (3) may be falsified because
the value Dw0 [v0] changes. In this case the sending of a 〈mydist, v0, . 〉
message by w0 again falsifies the premise of (3) and makes the conclusion
of (2) true, hence (2) and (3) are preserved.
In all other cases nothing changes in P (u0, w0, v0).

Type (3). Assume that channel uw is added.
If u = u0 and w = w0 this makes up(u0, w0) true, but by the addition
of w0 to Neighu0

(and vice versa) this preserves (1).
The sending of 〈mydist, v0, Dw0 [v0] 〉 by w0 makes the conclusion of (2)
true and the premise of (3) false, so P (u0, w0, v0) is preserved.
In all other cases nothing changes in P (u0, w0, v0).

c© Cambridge University Press, 1994.

4.3 The Netchange Algorithm 129

Lemma 4.15 For each u0 and v0, L(u0, v0) is an invariant.

Proof. Initially Du0 [u0] = 0 and Nbu0 [u0] = local . For v0 6= u0, initially
ndisu0 [w, v0] = N for all w ∈ Neighu, and Du0 [v0] = N and Nbu0 [v0] = udef .

Type (1). Assume that u receives a 〈mydist, v, d 〉 message from w.
If u 6= u0 or v 6= v0 no variable mentioned in L(u0, v0) changes.
If u = u0 and v = v0 the value of ndisu0 [w, v0] changes, but Du0 [v0] and
Nbu0 [v0] are recomputed exactly so as to satisfy L(u0, v0).

Type (2). Assume that channel uw fails.
If u = u0 or w = u0 then Neighu0 changes, but again Du0 [v0] and
Nbu0 [v0] are recomputed exactly so as to satisfy L(u0, v0).

Type (3). Assume that channel uw is added.
If u = u0 then Neighu0 changes by the addition of w, but as u sets
ndisu0 [w, v0] to N this preserves L(u0, v0).

4.3.2 Correctness of the Netchange Algorithm

The two correctness requirements for the algorithm will now be proved.

Theorem 4.16 When a stable configuration is reached, the tables Nbu[v]
satisfy

(1) if u = v then Nbu[v] = local ;
(2) if a path from u to v 6= u exists then Nbu[v] = w, where w is the first

neighbor of u on a shortest path from u to v;
(3) if no path from u to v exists then Nbu[v] = udef .

Proof. When the algorithm terminates, the predicate stable holds in addi-
tion to P (u, w, v) for all u, v, and w, and this implies that for all u, v, and
w

up(u, w) ⇒ ndisu[w, v] = Dw[v]. (4.2)

Applying also L(u, v) for all u and v we obtain

Du[v] =





0 if u = v

1 + min
w∈Neighu

Dw[v] if u 6= v ∧ ∃w ∈ Neighu : Dw[v] < N − 1

N if u 6= v ∧ ∀w ∈ Neighu : Dw[v] ≥ N − 1
(4.3)

which is sufficient to prove that Du[v] = d(u, v) if u and v are in the same
connected component of the network, and Du[v] = N if u and v are in
different connected components.

Use outside Utrecht University and photocopying are prohibited.

130 4 Routing Algorithms

First it is shown by induction on d(u, v) that if u and v are in the same
connected component then Du[v] ≤ d(u, v).

Case d(u, v) = 0: this implies u = v and hence Du[v] = 0.
Case d(u, v) = k + 1: this implies that there exists a node w ∈ Neighu

with d(w, v) = k. By induction Dw[v] ≤ k, which by (4.3) implies
Du[v] ≤ k + 1.

Now it will be shown by induction on Du[v] that if Du[v] < N then there is
a path between u and v and d(u, v) ≤ Du[v].

Case Du[v] = 0: Formula (4.3) implies that Du[v] = 0 only for u = v, which
gives the empty path between u and v, and d(u, v) = 0.

Case Du[v] = k + 1 < N : Formula (4.3) implies that there is a node w ∈
Neighu with Dw[v] = k. By induction there is a path between w and
v and d(w, v) ≤ k, which implies there is a path between u and v and
d(u, v) ≤ k + 1.

It follows that if u and v are in the same connected component then
Du[v] = d(u, v), otherwise Du[v] = N . This, Formula (4.2), and ∀u, v :
L(u, v) imply the stated result about Nbu[v].

To prove that a stable situation is eventually reached if topological changes
cease, a norm function with respect to stable will be defined. Define, for a
configuration γ of the algorithm,

ti = (the number of 〈mydist, ., i 〉 messages)
+ (the number of ordered pairs u, v s.t. Du[v] = i)

and the function f by

f(γ) = (t0, t1, . . . , tN).

f(γ) is an (N + 1)-tuple of natural numbers, on which a lexicographic or-
der (denoted ≤l) is assumed. Recall that (NN+1, ≤l) is a well-founded set
(Exercise 2.5).

Lemma 4.17 The processing of a 〈mydist, ., . 〉 message decreases f .

Proof. Assume node u with Du[v] = d1 receives a 〈mydist, v, d2 〉 message,
and after recomputation the new value of Du[v] is d. The algorithm implies
that d ≤ d2 + 1.

Case d < d1: Now d = d2 + 1 which implies that td2 is decreased by one
(and td1 as well), and only td with d > d2 is increased. This implies that
the value of f is decreased.

c© Cambridge University Press, 1994.

4.3 The Netchange Algorithm 131

Case d = d1: No new 〈mydist, ., . 〉 messages are sent by u, and the only
effect on f is that td2 is decreased by one, so the value of f is decreased.

Case d > d1: Now td1 is decreased by one (and td2 as well), and only td
with d > d1 is increased. This implies that the value of f is decreased.

Theorem 4.18 If the topology of the network remains constant after a
finite number of topological changes, then the algorithm reaches a stable
configuration after a finite number of steps.

Proof. If the network topology remains constant only further processing of
〈mydist, ., . 〉messages takes place, and, by the previous lemma, the value of
f decreases with every such transition. It follows from the well-foundedness
of the domain of f that only a finite number of these transitions can take
place; hence the algorithm reaches a configuration satisfying stable after a
finite number of steps.

4.3.3 Discussion of the Algorithm

The formal correctness results of the algorithm, guaranteeing the conver-
gence to correct tables within finite time after the last topological change,
are not very indicative about the actual behavior of the algorithm. The
predicate stable may in practice be false most of the time (namely, if topo-
logical changes are frequent) and when stable is false nothing is known
about the routing tables. They may contain cycles or even give erroneous
information about the reachability of a destination node. The algorithm can
therefore only be used in applications where topological changes are so in-
frequent that the convergence time of the algorithm is small compared with
the average time between (bursts of) topological changes. This is all the
more the case because stable is a global property, and stable configurations
of the algorithm are indistinguishable from non-stable ones for the nodes.
This means that a node never knows whether its routing table correctly re-
flects the network topology, and cannot defer forwarding data packets until
a stable configuration is reached.

Asynchronous processing of notifications. It has been assumed in this
section that the notifications of topological changes are processed atomically
together with the change in a single transition. The processing takes place
at both sides of the removed or added channel simultaneously. Lamport
[Lam82] has carried out the analysis in a little more detail to allow a delay

Use outside Utrecht University and photocopying are prohibited.

132 4 Routing Algorithms

in processing these notifications. The communication channel from w to u

is modeled as the concatenation of three queues.

(1) OQwu, the output queue of w;
(2) TQwu, the queue of messages (and data packets) currently being

transmitted;
(3) IQwu, the input queue of u.

Under the normal operation of a channel w sends a message to u by ap-
pending it to OQwu, messages move from OQwu to TQwu and from TQwu

to IQwu, and u receives them by deleting them from IQwu. When the chan-
nel fails the messages in TQwu are thrown away and messages in OQwu are
thereafter also thrown away rather than appended to TQwu. The 〈 fail, w 〉
message is placed at the end of IQwu, and when normal operation is resumed
the 〈 repair, w 〉 message is also placed at the end of IQwu. The predicates
P (u, w, v) take a slightly more complicated form, but the algorithm remains
the same.

Shortest-path routing. It is possible to assign a weight to each chan-
nel and modify the algorithm so as to compute shortest paths rather than
minimum-hop paths. The procedure Recompute of the Netchange algorithm
takes the weight of channel uw into account when estimating the length of
the shortest path via w if the constant 1 is replaced by ωuw. The constant
N in the algorithm must be replaced by an upper bound on the diameter of
the network.

It is fairly easy to show that when the modified algorithm reaches a stable
configuration the routing tables are indeed correct and give optimal paths
(all cycles in the network must have positive weight). The proof that the al-
gorithm eventually reaches such a configuration requires a more complicated
norm function.

It is even possible to extend the algorithm to deal with varying channel
weights; the reaction of node u to a change in a channel weight is the recom-
putation of Du[v] for all v. The algorithm would be practical, however, only
in situations where the average time between channel-cost changes is large
compared to the convergence time, which is a quite unrealistic assumption.
In these situations an algorithm should be preferred that guarantees cycle-
freedom also during convergence, for example the Merlin–Segall algorithm.

c© Cambridge University Press, 1994.

