
Department of Information and Computer Science
Utrecht University

INFOB3CC: Assignment 2
Delta Stepping

Trevor L. McDonell
Ivo Gabe de Wolff

Tom Smeding

Deadline: Friday, 20 December, 23:59

Change Log
2024-11-26: Initial release

Introduction
Suppose your train has just arrived in England and that you need to get from St. Pancras
to the Big Ben as quickly as possible. There are a number of roads that you could take,
which due to the current traffic each take a different amount of time to traverse. What
would be the fastest way to reach your destination?

The problem of finding the shortest path between two points in a road map is a special
case of a central problem in algorithmic graph theory: finding a path between two nodes
(or vertices) in a graph such that the sum of the weights of its constituent edges is
minimised.

In this practical assignment you will write a Haskell program to find the shortest
distance from a given node to the other nodes in a graph. And, since this is a course

1



about concurrency, naturally you will need to use multiple threads in order to compute
this. To do this you will implement Delta-Stepping, a parallelisable single-source shortest
path algorithm. We explain the algorithm in the Delta stepping lecture.

Concurrency
You are free to use whatever techniques we have discussed in the course in order to
implement this assignment, as long as you attain the desired speedup in the benchmarks.
In particular, you must decide which parts of the algorithm should be parallelised, and
then decide how to achieve this. You may implement a lock-based or lock-free solution,
or use a combination of both techniques.

Starting framework
A few remarks regarding the starting framework:

• Find the starting framework on the website:
https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html
Remember to run cabal update, otherwise you might not have the required de-
pendencies.

• The starting template contains various libraries that you will need to use. These
are briefly discussed below.

• The template includes forkThreads, which provides a useful starting point for
writing your own thread handling routines. The module Sample.hs contains a few
example graphs.

• The main function of the algorithm, deltaStepping, takes a Bool as its first
argument. This denotes whether the algorithm should run in a verbose mode. In
the verbose mode, you may print any debug information to the console, which may
be useful to debug your code.

• The starting template includes a small test suite to check your program, which you
can run via cabal run. To run a subset of the tests you can use the --pattern
flag, like cabal run delta-stepping-test -- --pattern 'bench'.

• The starting template includes a benchmark to gauge the performance of your
solution and the speedup you achieve as you add more threads. These are the
results I get from running my solution on an M2 Max:
N1: OK

322 ms ± 13 ms, 715 MB allocated, 73 MB copied, 868 MB peak memory
N2: OK

181 ms ± 18 ms, 727 MB allocated, 67 MB copied, 868 MB peak memory, 0.56x
N4: OK

116 ms ± 9.4 ms, 756 MB allocated, 70 MB copied, 868 MB peak memory, 0.36x
N8: OK

96.2 ms ± 3.5 ms, 815 MB allocated, 62 MB copied, 868 MB peak memory, 0.30x

2

https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html


Dependencies
In this project, you will need to use several external modules that provide data structures
to work with graphs or the internal state of your algorithm.

• Data.Graph.Inductive.Graph from fgl (Functional Graph Library)
This library provides an interface to work with graphs. The functions from this
library work on any type gr that implement a type class Graph. The template
uses Gr String Distance, which implements that type class. You can thus use
the functions from this library. Especially order, labEdges and out may be useful.

• Data.IntSet from containers
This module provides an efficient data structure to store a set of integers. For the
specific operations you need to do per bucket, this data structure will be more
efficient than a simple list ([Int]).
This module is imported under the name IntSet. You thus need to prefix any
functions with IntSet., e.g. IntSet.empty instead of empty.

• Data.IntMap from containers
This module provides an efficient data structure for mappings from integers to
certain values. You may also know this concept as a dictionary.
This module is imported under the name IntMap. To split an IntMap in parts, you
may want to use splitRoot, possibly multiple times.

• Data.Vector.Mutable from vector
This module provides a vector data type, very similar to arrays. These vectors are
mutable in IO blocks. The template uses these mutable vectors to store the array
of buckets. It thus allows you to update buckets from IO blocks, possibly from
multiple threads concurrently.
This module is imported under the name M. You thus need to prefix any functions
with M.. Note that an IOVector is an MVector instantiated such that it can be
used in IO. All function from the documentation that work on an MVector can
thus be used on an IOVector.

• Data.Vector.Storable.Mutable from vector
This module provides unboxed vectors. These vectors directly contain values, in-
stead of pointers to values, and are thus slightly more efficient than normal boxed
vectors. You can however only use them with basic types, like Float. Hence
the starting template uses boxed vectors for buckets, as they contain an IntSet,
and an unboxed vector for the array of distances, as distances are floating-point
numbers.

• Utils in the starting template
Finally, the starting template contains some extra functions to work with these
vectors. The function atomicModifyIOVector :: V.IOVector a -> Int -> (a
-> (a, b)) -> IO b provides the functionality of atomicModifyIORef on a vec-
tor from Data.Vector.Mutable. The function atomicModifyIOVectorFloat ::

3

https://hackage.haskell.org/package/fgl-5.8.3.0/docs/Data-Graph-Inductive-Graph.html
https://hackage.haskell.org/package/containers-0.7/docs/Data-IntSet.html
https://hackage.haskell.org/package/containers-0.7/docs/Data-IntMap.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Mutable.html
https://hackage.haskell.org/package/vector-0.13.0.0/docs/Data-Vector-Storable-Mutable.html


M.IOVector Float -> Int -> (Float -> (Float, b)) -> IO b provides this
functionality on an unboxed vector (from Data.Vector.Storable.Mutable) of
floating point numbers.

General remarks
Here are a few remarks:

• Make sure your program compiles using cabal. Please do not submit attempts
which don’t even compile.

• It is recommended to first write a sequential implementation of the algorithm
which you then parallelise. The starting template gives the structure of the basic
sequential algorithm. You are free to change any part of this module other than
the type of the deltaStepping function.

• Include useful comments in your code. Do not paraphrase the code, but describe
the structure of the program, special cases, preconditions, et cetera.

• Try to write readable and idiomatic code. Style influences the grade! For example,
use indentation of 2 spaces. If you prefer an automatic formatter, you could use
e.g. ormolu.1

• Efficiency (speed) of your implementation influences the grade.

• Copying solutions—from other people, the internet, or elsewhere—is not allowed.

Submission
• This assignment may be submitted individually or in pairs.

• The deadline for this assignment is Friday, 20 December, 23:59.

• Submission is via BlackBoard; the BlackBoard assignment will be published in due
course. Only submit src/DeltaStepping.hs. Hence, only change the file
src/DeltaStepping.hs, otherwise the graders will not be able to compile
your code.

Grading
1. (1 pt) Implement the function initialise.

2. (0.5 pt) Implement the function allBucketsEmpty.

3. (3 pt) Implement the function findRequests.

4. (3 pt) Implement the function relaxRequests.

5. (2.5 pt) Implement the function step.
1https://hackage.haskell.org/package/ormolu

4

https://hackage.haskell.org/package/ormolu

