
Department of Information and Computer Science
Utrecht University

INFOB3CC: Assignment 3
Quickhull

Trevor L. McDonell & Ivo Gabe de Wolff & Tom Smeding

Deadline: Friday, 24 January, 23:59

Change Log

2025-01-06: Initial release

Introduction

In this assignment you will design and implement a data-parallel version of Quickhull,
an algorithm to compute the smallest convex polygon containing a given set of points.
A shape is convex if it does not have any dents. Formally, for any two points on the
shape, the line segment between those shapes must also be fully contained in the shape.

1



As you might guess by its name, the Quickhull algorithm has some similarities with
Quicksort: it is a divide-and-conquer algorithm which partitions the input data and
recurses on these sub-partitions. In this practical, instead of using recursion to process
the sub-partitions in task-parallel, you will implement this algorithm in data-parallel,
where all segments are handled at once. To facilitate this you will use Accelerate, an
embedded language in Haskell for data-parallel array computations that can run on the
CPU or GPU. We have discussed Accelerate in the lectures, and you can find more
information about it in the library’s reference documentation1.

Starting Framework

A few remarks regarding the starting framework:

• Find the starting framework on the website:
https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html

Remember to run cabal update, otherwise you might not have the required de-
pendencies.

• Installation instructions can be found on the website: https://ics-websites.science.

uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html

– Note: It might be necessary to run cabal build once before the Haskell
language server (IDE integration) starts working in VSCode.

• The starting framework builds two executables from your code: quickhull and
quickhull-test. Both executables can take a number of command-line flags.

– Without flags, quickhull will open a graphical window in which you can
visually step through the algorithm, using your implementation. (Use the
arrow keys, and escape to close.) By default, a random input is generated;
use the --random and --seed flags (see cabal run quickhull -- --help)
to customise the randomiser. With the --file flag you can load one of the
data files in input/.

– With --benchmark, quickhull runs in benchmark mode. It still accepts
--random, --seed and --file as above.

– quickhull-test is a small test suite that tests your individual functions
against simple, sequential reference implementations. To run a subset of the
tests you can use the --pattern flag, for example:

cabal run quickhull-test -- --pattern ’segmented’

To run one of these executables, use e.g. cabal run quickhull-test. To pass
arguments, put them after --; for example:

cabal run quickhull -- --benchmark --file input/10.dat

1https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/

Data-Array-Accelerate.html

2

https://ics-websites.science.uu.nl/docs/vakken/b3cc/assessment.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/Data-Array-Accelerate.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/Data-Array-Accelerate.html


will benchmark your code on the cat input.

For Windows users: if cabal seems to hang after the actual program is already
finished, kill it using Task Manager and use the provided build_and_run.cmd and
build_and_test.cmd scripts instead. For usage info, open the scripts in your text
editor; they contain a REM block explaining what they do.

• Use the benchmark to gauge the performance of your solution and the speedup
you achieve as you add more threads. These are the results from running a model
solution on a 4-core laptop (Intel i5-8259U):

$ cabal run quickhull -- --benchmark --random 100000 --seed 1234

benchmarking quickhull

time 6.920 ms (6.679 ms .. 7.240 ms)

0.992 R² (0.986 R² .. 0.998 R²)
mean 9.471 ms (8.862 ms .. 10.89 ms)

std dev 2.536 ms (1.766 ms .. 3.672 ms)

variance introduced by outliers: 90% (severely inflated)

When using the scripts on Windows, use this command instead:

.\build_and_run --benchmark --random 100000 --seed 1234

Data representation

The algorithm of the starting template uses a head-flags array to distinguish the different
sections of the hull. It has the type:

type SegmentedPoints = (Vector Bool, Vector Point)

The two arrays are always of the same length. A flag value of True indicates that the
corresponding point in the points vector is definitely on the convex hull. Let that point
be called p1. Let the next (left-to-right) point whose flag value is True be called p2. We
say that all of the points between p1 and p2 are in the same segment.

The elements whose head flag is True form the boundaries of the segments. These
elements are known to be on the convex hull, and for the other elements the algorithm
hasn’t decided yet. The algorithm will proceed by repeatedly choosing one element per
segment which is on the convex hull, removing elements which definitely do not belong
to the convex hull, and partitioning the other elements to form new, smaller segments.

Initial partition

The main part of the algorithm always works on a segment of the array, formed by a line
and the points on one side of that line. This is encoded in the type SegmentedPoints

as described above. To start the algorithm, we must define the two initial segments by
choosing a line (p1, p2) and splitting the remaining points into a set of points above this
line, and a set of points below it. The output of this step be arrays of the form:

flags = [True, False, False, ..., True, False, False, ..., True]

points = [p1, a1, a2, ..., p2, b1, b2, ..., p1 ]

3

https://ark.intel.com/content/www/us/en/ark/products/135935/intel-core-i58259u-processor-6m-cache-up-to-3-80-ghz.html


Where a1, a2, . . . , are the points above the line (p1, p2), and b1, b2, . . . , are those
points below it. Placing the point p1 again at the end will make parts of the rest of the
implementation more convenient, but must be removed at the end. Some general hints:

• We must choose points p1 and p2 which are definitely on the convex hull.

• Points which lie on the line (p1, p2) should not be placed in either partition, as
they are not part of the convex hull. One consequence of this is that the size of
the output arrays can not be determined directly from the size of the input. Make
sure that the middle point(s) along a line can not be chosen as the points p1 or p2,
nor as the furthest point.

• Do not physically split the input into separate segments which are then concate-
nated, for example by using filter and (++). This approach will not scale to the
recursive step of the algorithm (more generally, consider how could you efficiently
concatenate thousands of array segments?) and thus will earn you no marks.

Partition

After the initial partition is created, the partition step is executed repeatedly on the
segmented representation until no undecided points remain. Each segment of the input
consists of a different line segment. The process is similar to what was performed in
the initial partitioning step, however now we need to perform the process over all line
segments at once. Thus, instead of regular functions such as scanl1 which operate over
the entire array, we must use segmented versions which operate on each segment of a
segmented array.

General remarks

• Make sure your program compiles using cabal build.

• The documentation for Accelerate on Hackage is somewhat outdated; reference
documentation for the version used by the Quickhull template can be found here:
https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/

Data-Array-Accelerate.html

• It is not allowed to concatenate arrays, for example with (++). You must process
all line segments at once in data-parallel!

• The various scan* and permute operators are very useful for this practical, pay
attention to what they do.

• Include useful comments in your code. Do not paraphrase code but describe the
structure of your program, special cases, preconditions, et cetera.

4

https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/Data-Array-Accelerate.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/resources/acc-head-docs/Data-Array-Accelerate.html


• Try to write readable and idiomatic code. Style influences the grade! For example,
use indentation of 2 spaces. If you prefer an automatic formatter, you could use
e.g. ormolu.2

• Efficiency (speed) of your implementation influences the grade.

• Copying solutions—from other people, the internet, GitHub Copilot, or elsewhere—
is not allowed.

• You cannot use external packages other than the dependencies which are already
included in the template.

• For troubleshooting if things don’t work, double-check if you have followed all the
relevant instructions on the setup page3, and that your problem is not listed there
in the Troubleshooting section. When in doubt, ask in a working group session or
ask the teachers.

Submission

• This assignment may be submitted individually or in pairs.

• The deadline for this assignment is Friday, 24 January, 23:59.

• Submission is via BlackBoard; the BlackBoard assignment will be published in
due course. Only submit src/Quickhull.hs. Graders will assume that you
have kept all other files as-is.

Grading

1. (0.5 pt) Implement the functions shiftHeadFlagsL and shiftHeadFlagsR, which
given an array shifts the values one element to the left or right respectively.

2. (1 pt) Implement the functions segmentedScanl1 and segmentedScanr1, which
are segmented variants of the inclusive scan operators scanl1 and scanr1, respec-
tively. These operators use a head flags array to indicate (by the value True) where
each new segment should begin. You can assume that the first value in the flags
array (left or right-most element, respectively) is True.

3. (0.5 pt) Implement the functions propagateL and propagateR, which propagate
(copy) the value whose corresponding head flag is True to respectively the right
or the left, until another head flag with value True is encountered.

4. (3 pt) Implement the function initialPartition.

5. (4 pt) Implement the function partition.

6. (1 pt) Finally, complete the algorithm by implementing the function quickhull.
2https://hackage.haskell.org/package/ormolu
3https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html

5

https://hackage.haskell.org/package/ormolu
https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html


Help/troubleshooting

• Always double-check the setup instructions on the website, and force-reload the
page to ensure you have the latest one: https://ics-websites.science.uu.nl/
docs/vakken/b3cc/haskell-setup-instructions.html

• When running your program, you may get output like this intermixed with the
normal output of your program (e.g. the test suite):
Creating library C:\Users\name\AppData\Local\accelerate\accelerate-l
lvm-1.3.0.0\accelerate-llvm-native-1.3.0.0\llvmpr-19.1.0\x86 64-pc-w

indows-msvc\alderlake\rel\meep834f39da884b09540be452029780f0afde0750
50a932683f4b66c6e44ca61b04.lib and object C:\Users\name\AppData\Loca
l\accelerate\accelerate-llvm-1.3.0.0\accelerate-llvm-native-1.3.0.0\
llvmpr-19.1.0\x86 64-pc-windows-msvc\alderlake\rel\meep834f39da884b0
9540be452029780f0afde075050a932683f4b66c6e44ca61b04.exp

This is output produced by clang when compiling the kernels resulting from your
Accelerate code. Unfortunately we cannot disable this output. However, compiled
kernels are cached, so if you run e.g. the test suite a second time, you shouldn’t
get this distracting output any more.

• If you get odd characters printed in the test suite, like Γ£ô, then that’s a general
Unicode issue; this does not affect correctness of the test suite.

6

https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html
https://ics-websites.science.uu.nl/docs/vakken/b3cc/haskell-setup-instructions.html

