Department of Information and Computer Science
Utrecht University

INFOB3CC: Sharing state

Trevor L. McDonell
November 28, 2021

Introduction

Use these tasks to practice the topics of the lectures. You may have to do some research to read up on terms
or topics not (yet) covered in the lectures.

When questions have tags like “[Threads 2]”, this means that should expect to be able to do this exercise
after the mentioned lecture.

Questions

1. With a single MVar you can create a multi-threaded lock. [Threads 2]
(a) Which operation(s) in Haskell can you use to implement this operation?
(b) Give the code for the lock and unlock methods.
(¢) Which of the properties does the MVar-based lock not have? Explain why:

¢ Mutual exclusion
¢ Deadlock freedom
« No starvation

2. We now have discussed two types of locking mechanism, the spin lock (using IORef; also appears in
tutorial set 3 (Threads)) and the blocking lock (using MVar). [Threads 2/3]

(a) Explain the difference between these two types of locks.

(b) In which situation is a spin lock be better? In which situation is a blocking lock better?

3. What is the behaviour when multiple threads concurrently execute on an MVar: [Threads 2]
(a) putMVar :: MVar a -> a -> I0 ()
(b) takeMVar :: MVar a -> I0 a
(c) readMVar :: MVar a -> I0 a
4. In the lecture we discussed the Async wrapper to manage asynchronous computations. Write a func-

tion race which, given two asynchronous computations, returns the result of the first computation to
complete: [Threads 2]

race :: Async a -> Async b -> I0 (Either a b)

5. In the lecture we discussed building an unbounded queue using MVars. One additional operation we
might like is to “undo” a dequeue operation; pushing an item back onto the read end of the queue.
Consider the following implementation: [Threads 3]

undequeue :: Queue a -> a -> I0 ()
undequeue (Queue readEnd _) val = do
newReadEnd <- newEmptyMVar



Concurrency November 28, 2021

stream <- takeMVar readEnd
putMVar newReadEnd (Item val stream)
putMVar readEnd newReadEnd

Is the implementation correct? Consider what happens in different situations, such as when there are
multiple concurrent calls to dequeue and/or undequeue, or if the queue is empty /non-empty.

6. Consider the following implementation of a lock data type. This is a time-based lock for at most 10
threads, where each thread has a unique identifier myId in the range [0..9] (inclusive). Each thread
gets a time slot in which it may acquire the lock. [Threads 1]

data Lock = Lock (IORef Bool)

newLock :: IO Lock
newLock = do
r <- newIORef False — True=locked, False=unlocked

return (Lock r)

lock :: Int -> Lock -> I0 ()
lock myId 1@(Lock ref) = do — myld is in the range [0..9]
time <- getCurrentTime — current program run time, in milliseconds
if time "mod” 10 == myId
then do — this is my timeslot; try to acquire the lock
locked <- readIORef ref
if locked
then lock myId 1 — retry
else writeIORef ref True — take lock
else — not my timeslot; retry

lock mylId 1

unlock :: Lock -> I0 ()
unlock (Lock ref) = atomicWriteIORef ref False

A correct lock implementation must fulfil the properties of mutual exclusion, deadlock freedom, and
starvation freedom. Explain why each of these requirements are or are not fulfilled by this lock imple-
mentation.

7. Consider the following implementation of a lock data type. This is a ticket based lock; when a thread
wants the lock, it takes a ticket number, and then waits for that number, similar to tickets in a pharmacy.
[Threads 3]

data Lock = Lock (IORef Int) (IORef Int)

init :: IO Lock

init = do
refTicket <- newIORef O
refCounter <- newIORef O
return (Lock refTicket refCounter)

lock :: Lock -> I0 ()
lock (Lock refTicket refCounter) = do
ticket <- atomicModifyIORef' refTicket (\t -> (t + 1, t))
let
wait = do



Concurrency November 28, 2021

current <- readIORef refCounter

if current == ticket
then return () — take lock
else wait —— not my turn; retry
wait
unlock :: Lock -> IO ()
unlock (Lock _ refCounter) =

atomicModifyIORef' refCounter (\c -> (c + 1, ()))

()

(b)
()

A correct lock implementation must fulfil the properties of mutual exclusion and deadlock freedom.
Explain why each of these requirements are or are not fulfilled by this lock implementation.

Does unlock require atomicModifyIORef, or could it also be updated non-atomically?

The use of atomicModifyIORef in lock means that this function may starve. Suppose we change
this function to use atomic fetch-and-add, which atomically reads, returns and increments a variable,
and is wait-free. Does that make this lock starvation free?

8. You have been asked to implement the ledger software for a bank, which will hold the account balance
for each of the clients. The software will support operations such as withdrawing, depositing, and
transferring money between accounts. It will use threads in order to process multiple transactions
concurrently. You intend to use locks in order to control the multiple threads in the program. [Threads

2
(a)

(b)

The bank proposes that in order to safely execute transactions, a single global lock should be placed
around the entire account ledger. You think this will not be a good solution; explain why.

You propose instead to have a single lock on each individual account. You know you must be careful
with this arrangement, however, because it is possible to encounter a deadlock when trying to access
two accounts, even if you use a correct lock implementation. Give an example execution/scenario
of how this can occur.

How can you prevent these deadlocks, while still using only one lock per bank account. You can
not change the implementation of the lock itself, only how it is used.

How would you extend the answer of the previous section to handle a variable number of bank
accounts in a single transaction, in particular, when it is not known beforehand which accounts will
need to be accessed? For example, to withdraw money from a secondary account when there are
insufficient funds available in the first account.

9. A large furniture company wants to develop an application to manage the stock in their warehouse. This
will be used to check which products are in stock. Each product consists of one or multiple parts. A
part may also be used for different products. For instance, different tables may use the same legs, as
seen in these example products: [Threads 2]

Table Utrecht
— 1 x tabletop oak
— 4 x oak leg
Table Amsterdam
— 1 x tabletop oak
— 2 X steel leg
Table Amersfoort

— 1 x tabletop glass
— 2 X steel leg



Concurrency November 28, 2021

In this database, we have three different products (three tables), which are built from four different parts
(two kinds of tabletops, two kinds of table legs).

The application keeps track of the number of each part is in stock. When making a new order, the
system should check the stock of each part, and if everything is in stock, decrease the stock count of the
used parts.

(a) The system should handle multiple orders in parallel. Alex proposes to use a single lock for the
whole database. Explain why this is a bad idea.

(b) Billy suggests to use a lock per part. When ordering a product, we acquire the lock of each part
of that product, in the same order as listed in the product description. We verify the stock of each
part and if everything is in stock, decrease the stock counts. Finally we release all the locks.

Using the following product database, demonstrate an execute sequence where this method would

fail:
e Wardrobe Australia
— 1 x frame
— 1 x door

— 1 x clothes rail

e Wardrobe New Zealand
— 1 x drawer
— 1 x frame
— 1 x door

¢ Wardrobe accessories
— 1 x clothes rail
— 1 x drawer

(¢) How should a product database be constructed to prevent these issues?
(d) Consider the following product database:

e Couch Neptune

— 1 x seat module (small)

— 1 x seat module (large)
e Couch Mars

— 1 x seat module (small)
e Couch Venus

— 1 x seat module (large)

The couches Mars and Venus are ordered very frequently. Omar is afraid that this will prevent an
order containing couch Neptune from completing, since that order will need to be busy for a longer
time as it contains twice as many modules. Explain what general property a lock should hold to
prevent this situation being a problem. Explain why this situation cannot occur when that property
holds.

(e) An MVar can be empty or contain a value. Ivar says that you can use this to implement the locks.
The stock counts will be stored in a value of type MVar Int per part, where the Int is the actual
stock count. Explain how this can be done and how the empty state and blocking functions make
this easy to implement.



