
Department of Information and Computer Science
Utrecht University

INFOB3CC: Sharing state (solutions)

Trevor L. McDonell

November 28, 2021

Introduction
Use these tasks to practice the topics of the lectures. You may have to do some research to read up on terms
or topics not (yet) covered in the lectures.

Questions
1. With a single MVar you can create a multi-threaded lock.

(a) Which operation(s) in Haskell can you use to implement this operation?
(b) Give the code for the lock and unlock methods.

Example implementation:

type Lock = MVar ()

lock :: Lock -> IO ()
lock = takeMVar

unlock :: Lock -> IO ()
unlock lock = putMVar lock ()

(c) Which of the properties does the MVar-based lock not have? Explain why:
• Mutual exclusion
• Deadlock freedom
• No starvation

Unlike the IORef based lock of the tutorial set 2 (Threads), the MVar lock does not have these
problems, in particular starvation. The Haskell runtime system ensures fairness because threads
blocked on the MVar are woken up in first-in-first-out order.
Of course, as with the IORef lock, sets of MVar based locks can cause deadlock when used
incorrectly, even if individually the lock is deadlock-free.

2. We now have discussed two types of locking mechanism, the spin lock (using IORef, see tutorial set 2
(Threads)) and the blocking lock (using MVar).
(a) Explain the difference between these two types of locks.



Concurrency November 28, 2021

With a spin lock, the thread actively waits by looking at a variable until it has a desired value.
With the blocking lock, the thread is descheduled by the runtime system so does not consume
CPU resources while waiting for its turn at the lock.

(b) In which situation is a spin lock be better? In which situation is a blocking lock better?

You have to weigh the cost of actively spinning (the processor time as well as the associated
memory traffic) against the thread scheduling cost. If you expect the thread to wait only a
very short time (low contention) then spinning may be better; as the waiting time (contention)
increases, blocking will be preferred.
The user-space threads in Haskell (managed by the Haskell runtime system) are very lightweight,
so the scheduling cost is lower than using kernel threads directly, as is common in some other
languages like C and C#.

3. What is the behaviour when multiple threads concurrently execute on an MVar:
(a) putMVar :: MVar a -> a -> IO ()

If the MVar is empty, the first thread will put its value into the MVar, which is then full. When
the MVar is full, the threads will be blocked and get woken up in first-in-first-out order whenever
the MVar is emptied (by another thread).

(b) takeMVar :: MVar a -> IO a

If the MVar is full, the first thread will remove the value out of the MVar and then leave it empty.
When the MVar is empty, the threads will be blocked and are woken up in FIFO order whenever
the MVar is full.

(c) readMVar :: MVar a -> IO a

If the MVar is full the thread will read the value, and leave the MVar full. If it is empty, once a
value is put into it, all threads blocked reading it will be woken up at once.

4. In the lecture we discussed the Async wrapper to manage asynchronous computations. Write a func-
tion race which, given two asynchronous computations, returns the result of the first computation to
complete:

race :: Async a -> Async b -> IO (Either a b)

A partial solution:

race :: Async a -> Async b -> IO (Either a b)
race a b = do

var <- newEmptyMVar
_ <- forkIO $ do

ra <- wait a
putMVar var (Left ra)
cancel b



Concurrency November 28, 2021

_ <- forkIO $ do
rb <- wait b
putMVar var (Right rb)
cancel a

takeMVar var

This code has a “thread leak”: if a finishes first, b is cancelled and the second forkIO thread in
race will block indefinitely. Try to figure out how to fix this problem.

5. In the lecture we discussed building an unbounded queue using MVars. One additional operation we
might like is to “undo” a dequeue operation; pushing an item back onto the read end of the queue.
Consider the following implementation:

undequeue :: Queue a -> a -> IO ()
undequeue (Queue readEnd _) val = do

newReadEnd <- newEmptyMVar
stream <- takeMVar readEnd
putMVar newReadEnd (Item val stream)
putMVar readEnd newReadEnd

Is the implementation correct? Consider what happens in different situations, such as when there are
multiple concurrent calls to dequeue and/or undequeue, or if the queue is empty/non-empty.

The implementation works (concurrently) only if the queue is non-empty. Consider what happens
when the queue is empty, a thread (T1) is blocked on dequeue, and then another thread (T2) calls
undequeue. We would like that T1 should return the new element given by undequeue. However,
T1 is already blocked and is holding the readEnd MVar, so undequeue will also block trying to take
readEnd. The queue is deadlocked.
There is no known solution for this problem using this representation for Queue.

6. Consider the following implementation of a lock data type. This is a time-based lock for at most 10
threads, where each thread has a unique identifier myId in the range [0..9] (inclusive). Each thread
gets a time slot in which it may acquire the lock.

1 data Lock = Lock (IORef Bool)
2

3 newLock :: IO Lock
4 newLock = do
5 r <- newIORef False −− True=locked, False=unlocked
6 return (Lock r)
7

8 lock :: Int -> Lock -> IO ()
9 lock myId l@(Lock ref) = do −− myId is in the range [0..9]

10 time <- getCurrentTime −− current program run time, in milliseconds
11 if time `mod` 10 == myId
12 then do −− this is my timeslot; try to acquire the lock
13 locked <- readIORef ref
14 if locked
15 then lock myId l −− retry



Concurrency November 28, 2021

16 else writeIORef ref True −− take lock
17 else −− not my timeslot; retry
18 lock myId l
19

20 unlock :: Lock -> IO ()
21 unlock (Lock ref) = atomicWriteIORef ref False

A correct lock implementation must fulfil the properties of mutual exclusion, deadlock freedom, and
starvation freedom. Explain why each of these requirements are or are not fulfilled by this lock imple-
mentation.

• mutual exclusion: no. A thread can be descheduled between checking whether the lock is
free (line 13) and entering the critical section (line 14). Similarly thread can be descheduled
between checking the current time (line 10) and deciding whether it is its turn to enter the
critical section (line 11), so can try to enter the critical section when it is not its turn.

• deadlock freedom: yes. If two threads try to acquire the lock at the same time, the implemen-
tation will not deadlock (or livelock) itself.

• starvation freedom: no. A thread can be infinitely unlucky and always ask for the lock (getCur-
rentTime) when it is not its timeslot.

7. Consider the following implementation of a lock data type. This is a ticket based lock; when a thread
wants the lock, it takes a ticket number, and then waits for that number, similar to tickets in a pharmacy.

1 data Lock = Lock (IORef Int) (IORef Int)
2

3 init :: IO Lock
4 init = do
5 refTicket <- newIORef 0
6 refCounter <- newIORef 0
7 return (Lock refTicket refCounter)
8

9 lock :: Lock -> IO ()
10 lock (Lock refTicket refCounter) = do
11 ticket <- atomicModifyIORef ' refTicket (\t -> (t + 1, t))
12 let
13 wait = do
14 current <- readIORef refCounter
15 if current == ticket
16 then return () −− take lock
17 else wait −− not my turn; retry
18 wait
19

20 unlock :: Lock -> IO ()
21 unlock (Lock _ refCounter) =
22 atomicModifyIORef ' refCounter (\c -> (c + 1, ()))

(a) A correct lock implementation must fulfil the properties of mutual exclusion and deadlock freedom.
Explain why each of these requirements are or are not fulfilled by this lock implementation.



Concurrency November 28, 2021

• mutual exclusion: yes. The ticket number is always unique due to atomicModifyIORef,
so only one thread can ever have a ticket number which matches the counter.

• deadlock freedom: yes.

(b) Does unlock require atomicModifyIORef, or could it also be updated non-atomically?

It does not require atomicity between the read of the old value and the write of the new value.
It just requires atomicity of writes and can thus be implemented without atomicModifyIORef
or atomic compare-and-swap. Only a thread holding the lock can update refCounter, and at
most one thread can hold the lock at a time.

(c) The use of atomicModifyIORef in lock causes that this function may starve. Suppose we change
this function to use atomic fetch-and-add, which atomically reads, returns and increments a variable,
and is wait-free. Does that make this lock starvation free?

Yes. A thread will always get a unique ticket number, so it will eventually be able to take the
lock (as usual, assuming threads do not crash while a lock is held).

8. You have been asked to implement the ledger software for a bank, which will hold the account balance
for each of the clients. The software will support operations such as withdrawing, depositing, and
transferring money between accounts. It will use threads in order to process multiple transactions
concurrently. You intend to use locks in order to control the multiple threads in the program.
(a) The bank proposes that in order to safely execute transactions, a single global lock should be placed

around the entire account ledger. You think this will not be a good solution; explain why.

The program will be sequentialised and no threads will be able to process transactions concur-
rently, all waiting on the single lock.

(b) You propose instead to have a single lock on each individual account. You know you must be careful
with this arrangement, however, because it is possible to encounter a deadlock when trying to access
two accounts, even if you use a correct lock implementation. Give an example execution/scenario
of how this can occur.

Canonical example:
thread 1: transfer(from A, to B, amount1)
thread 2: transfor(from B, to A, amount2)
If the threads take the individual account locks in that order, then it can be that thread 1 takes
the lock on A and then is descheduled, then thread 2 takes the lock on B. At this point the
program is deadlocked.

(c) How can you prevent these deadlocks, while still using only one lock per bank account. You can
not change the implementation of the lock itself, only how it is used.

Threads must always take locks in a specific order, for example taking the hash of the two locks
and taking the lowest hash first. For example if hash(A) < hash(B) then threads should take
the lock on A first.

(d) How would you extend the answer of the previous section to handle a variable number of bank
accounts in a single transaction, in particular, when it is not known beforehand which accounts will



Concurrency November 28, 2021

need to be accessed? For example, to withdraw money from a secondary account when there are
insufficient funds available in the first account.

Extending the idea of the previous section, to take a third lock (after the first two are already
acquired) then it is still required that all locks were taken in the correct order. For example if
we have that hash(A) < hash(C) < hash(B), since we already have the lock on B, we must
release it, take the lock on C, and re-take the lock on B.

9. A large furniture company wants to develop an application to manage the stock in their warehouse. This
will be used to check which products are in stock. Each product consists of one or multiple parts. A
part may also be used for different products. For instance, different tables may use the same legs, as
seen in these example products:

• Table Utrecht
– 1 × tabletop oak
– 4 × oak leg

• Table Amsterdam
– 1 × tabletop oak
– 2 × steel leg

• Table Amersfoort
– 1 × tabletop glass
– 2 × steel leg

In this database, we have three different products (three tables), which are built from four different parts
(two kinds of tabletops, two kinds of table legs).
The application keeps track of the number of each part is in stock. When making a new order, the
system should check the stock of each part, and if everything is in stock, decrease the stock count of the
used parts.
(a) The system should handle multiple orders in parallel. Alex proposes to use a single lock for the

whole database. Explain why this is a bad idea.

The single lock will mean all orders must be processed sequentially.

(b) Billy suggests to use a lock per part. When ordering a product, we acquire the lock of each part
of that product, in the same order as listed in the product description. We verify the stock of each
part and if everything is in stock, decrease the stock counts. Finally we release all the locks.
Using the following product database, demonstrate an execute sequence where this method would
fail:

• Wardrobe Australia
– 1 × frame
– 1 × door
– 1 × clothes rail

• Wardrobe New Zealand
– 1 × drawer
– 1 × frame
– 1 × door

• Wardrobe accessories
– 1 × clothes rail



Concurrency November 28, 2021

– 1 × drawer

Example execution:
Thread 1 Thread 2 Thread 3
acquire lock: frame
acquire lock: door

acquire lock: drawer
wait: frame

acquire lock: clothes rail
wait: drawer

wait: clothes rail

(c) How should a product database be constructed to prevent these issues?

The parts (locks) must be acquired in some fixed global order, for example by product number
or alphabetically by name.

(d) Consider the following product database:
• Couch Neptune

– 1 × seat module (small)
– 1 × seat module (large)

• Couch Mars
– 1 × seat module (small)

• Couch Venus
– 1 × seat module (large)

The couches Mars and Venus are ordered very frequently. Omar is afraid that this will prevent an
order containing couch Neptune from completing, since that order will need to be busy for a longer
time as it contains twice as many modules. Explain what general property a lock should hold to
prevent this situation being a problem. Explain why this situation cannot occur when that property
holds.

Starvation freedom: every thread which wants access to the critical resource will eventually get
it.

(e) An MVar can be empty or contain a value. Ivar says that you can use this to implement the locks.
The stock counts will be stored in a value of type MVar Int per part, where the Int is the actual
stock count. Explain how this can be done and how the empty state and blocking functions make
this easy to implement.

In order to read or update the stock count, a thread has to take the MVar. Assume that all of
the MVars initially start full. If the MVar is empty when a thread wants it, that means another
thread is currently updating the stock for that part, so the thread will wait for it to become
full again and be woken up once that happens.


