
Department of Information and Computer Science
Utrecht University

INFOB3CC: STM (solutions)

Trevor L. McDonell

December 5, 2021

Introduction
Use these tasks to practice the topics of the lectures. You may have to do some research to read up on terms
or topics not (yet) covered in the lectures.

Questions
1. Properties of software transactional memory.

(a) What is the purpose of the function atomically :: STM a -> IO a?

Solution: The atomically function executes the actions given in the first argument as a single
atomic transaction. All of the actions defined in the atomic block appear to the rest of the
program to take place as a single indivisible operation.

(b) Explain why operations in software transactional memory are defined using the type STM.

Solution: Because software transactional memory relies on the ability to abort and retry
transactions when a conflict is detected, we must limit the operations inside the atomic block
to actions which can be undone. For example, most IO actions such as printing to the console
can not be undone, and so can not be allowed inside atomic blocks. The STM type statically
enforces this restriction at compile time.

(c) Which of these properties hold for the atomic blocks of software transactional memory? Explain
why:

• Mutual exclusion
• Deadlock freedom
• No starvation

Solution: STM ensures mutual exclusion as well as deadlock freedom (including when multiple
variables are read or written in a transaction, which is a problem for traditional lock-based
approaches).
STM suffers from starvation, as the runtime does not ensure fairness between threads: when
the value in a TVar changes, all threads blocked on that TVar are woken up, so a thread may
have continual bad luck and never be able to commit its transaction. This in particular is a
problem for long-running transactions being continually aborted by shorter transactions.

2. Software transactional memory compared to locks.
(a) What is an advantage of using atomic blocks (software transactional memory) over programming

with explicit locks?



Concurrency December 5, 2021

Solution: Examples:

• Composable atomicity. For example, in the bank accounts program using locks the
transfer function needed to be reimplemented in a special way, rather than use the
existing (and correctly working) withdraw and deposit operations.

• Composable blocking. Build operations using multiple blocking operations using retry
and orElse. This is very difficult to do using locks.

(b) Give a simple example program which is easier to implement using software transactional memory
compared to using explicit locks.

Solution: Any application which is subject to the problems of using locks, such as deadlock
or lock priority inversion. The classic example is the dining philosophers.

(c) Give an example program which could be easier to implement using explicit locks compared to
software transactional memory.

Solution: This is a question about the limitations of software transactional memory. Examples
include:

• A program which relies on a fairness guarantee between threads (only applies to a locking
structure with a fairness guarantee, such as MVars).

• An application where a thread needs to retry (or block) a transaction as well as make
a visible effect at the same time. An example would be a synchronous communication
channel, where both the reader and the writer must be present simultaneously for the
operation to go ahead: the operation needs to block (wait for the other end to become
active) as well as have a visible effect (advertise that there is a blocked thread).

3. Implementation of software transactional memory.
(a) Describe briefly how the atomically operation works.

Solution: An STM transaction works be accumulating a log of readTVar and writeTVar
operations as they happen in the transaction, rather than storing them to main memory im-
mediately. At the end of the transaction, the implementation validates the log by comparing
the values read by readTVar during the transaction to the current contents of memory. If the
values match then the writeTVar operations are committed to memory, and if not the log is
discarded and the transaction runs again from the beginning.

(b) What are the performance considerations for writeTVar?

Solution: Each writeTVar happens in the log rather than directly to main memory. Thus it
is easy to discard the effects of a failed transaction.

(c) What are the performance considerations for readTVar?

Solution: Each readTVar must traverse the log to see if there was an earlier writeTVar to the
same variable. Hence readTVar is an O(n) operation in the length of the log. Because of this,
reading many TVars in a single transaction gives O(n2) for the whole transaction. (Computers
are pretty fast at linear search, but perhaps don’t read 1000 TVars.)



Concurrency December 5, 2021

4. In Haskell the MVar lock implements fairness by queuing up threads blocked on the MVar in first-in-first-
out order. A thread trying to read a value from an empty MVar will be queued waiting for a corresponding
putMVar, and a putMVar on a full MVar will be queue waiting for a corresponding takeMVar.
Suppose we want to implement fairness in STM in the same way for TMVar. Consider the following imple-
mentation of TMVar, which explicitly keeps track of the blocked takeTMvar and putTMVar operations:

data TMVar a = TMVar
(TVar (Maybe a)) −− as before, the TMVar may be empty or full
(TVar [TVar (Maybe a)]) −− list threads blocked waiting to put or take a value

Will this implementation work? Consider the cases for how putTMVar should be implemented.

Solution: This implementation will not work. There are three cases to consider:

• The TMVar is empty and there are no blocked takeMVars. The value is stored in the TMVar
and the operation returns.

• The TMVar is empty and there are some blocked takeMVars. Remove the first blocked takeMVar
from the queue and put the value into its TVar.

• The TMVar is full. We must create a new TVar containing the value to be put, add this to the
end of the list of blocked putTMVars, and wait until the TVar contents become empty via a
corresponding takeMVar.

The last case is the difficult one because we cannot have a transaction which both has a visible effect
(add itself to the queue of blocked threads) and blocks (calls retry) because retry abandons any
changes made to TVars in the current transaction and starts again.

5. Characteristics of software transactional memory.
(a) When writing code using STM, you cannot perform side effects in IO, such as reading or writing

files. Why is this restriction needed?

Solution: STM relies on the ability to undo the effects of the atomic block when a conflict is
detected, and then retry the transaction. Most IO actions, such as writing to the console, can
not be undone, so the STM type restricts the transaction to only contain operations which can
rolled-back when a transaction is retried.

(b) How does STM guarantee the property of mutual exclusion?

Solution: STM functions are executed as a single atomic transaction using the atomically
function. To other threads, it appears that all of the modifications in the atomically block
happen instantaneously.
This is achieved by keeping track of a log of what actions a thread performs in the atomically
section, at the end of the block, validating the log to ensure that the thread executed with a
consistent view of memory, and if so, committing all changes in the log to memory.

(c) Does STM guarantee the absence of starvation? Explain why or why not.

Solution: No. A thread can be continually forced to retry, if another thread finishes its
transaction and commits some change which forces the first thread to abort. This is particularly
a problem if you have a long-running transaction competing with many short transactions.



Concurrency December 5, 2021

(d) In some situations STM transactions can be slow. Give an example where this can occur, and
explain why this happens.

Solution: Valid examples:

• Each readTVar must traverse the lock to see if it was written by an earlier writeTVar,
which is an O(n) operation.

• A transaction is woken up whenever any one of the TVars in its read set changes, so calling
retry is O(n).

• Composing too many blocking operations together can cause a thread to be woken up
many times. For example, if we want to wait on a list of TMVars, consider

atomically (mapM takeTMVar ts); vs.
mapM (atomically . takeTMVar) ts.

In the first example the transaction is re-run from the start for every element of ts, so is
O(n2).

6. Disgruntled with the limitations of software transactional memory, Felix makes his own version which
includes the possibility to read and write files on disk. Writing to files is directly executed, and if the
transaction fails, the operation is reverted by rewriting the original contents of the file back. Will this
approach work? If so motivate your answer, or if not explain why or describe a problem which can be
encountered.

Solution: This will not work because another thread can observe the intermediate state of the
transaction. Thus another thread can execute with an inconsistent view of memory. Example:
Thread A write a file to memory, then is descheduled. Thread B reads the contents of that file, and
commits its results. Thread A resumes but detects a conflict and is forced to abort; it returns the
file back to its original contents and retries. This throws away B’s changes, which had been properly
committed.

7. Follow the tutorial Beautiful Concurrency. If you have any questions, ask the TAs in the working group
session.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf

