
Department of Information and Computer Science
Utrecht University

INFOB3CC: STM
Trevor L. McDonell

December 5, 2021

Introduction
Use these tasks to practice the topics of the lectures. You may have to do some research to read up on terms
or topics not (yet) covered in the lectures.

Questions
1. Properties of software transactional memory.

(a) What is the purpose of the function atomically :: STM a -> IO a?
(b) Explain why operations in software transactional memory are defined using the type STM.
(c) Which of these properties hold for the atomic blocks of software transactional memory? Explain

why:
• Mutual exclusion
• Deadlock freedom
• No starvation

2. Software transactional memory compared to locks.
(a) What is an advantage of using atomic blocks (software transactional memory) over programming

with explicit locks?
(b) Give a simple example program which is easier to implement using software transactional memory

compared to using explicit locks.
(c) Give an example program which could be easier to implement using explicit locks compared to

software transactional memory.

3. Implementation of software transactional memory.
(a) Describe briefly how the atomically operation works.
(b) What are the performance considerations for writeTVar?
(c) What are the performance considerations for readTVar?

4. In Haskell the MVar lock implements fairness by queuing up threads blocked on the MVar in first-in-first-
out order. A thread trying to read a value from an empty MVar will be queued waiting for a corresponding
putMVar, and a putMVar on a full MVar will be queue waiting for a corresponding takeMVar.
Suppose we want to implement fairness in STM in the same way for TMVar. Consider the following imple-
mentation of TMVar, which explicitly keeps track of the blocked takeTMvar and putTMVar operations:

data TMVar a = TMVar
(TVar (Maybe a)) −− as before, the TMVar may be empty or full
(TVar [TVar (Maybe a)]) −− list threads blocked waiting to put or take a value

Will this implementation work? Consider the cases for how putTMVar should be implemented.



Concurrency December 5, 2021

5. Characteristics of software transactional memory.
(a) When writing code using STM, you cannot perform side effects in IO, such as reading or writing

files. Why is this restriction needed?
(b) How does STM guarantee the property of mutual exclusion?
(c) Does STM guarantee the absence of starvation? Explain why or why not.
(d) In some situations STM transactions can be slow. Give an example where this can occur, and

explain why this happens.

6. Disgruntled with the limitations of software transactional memory, Felix makes his own version which
includes the possibility to read and write files on disk. Writing to files is directly executed, and if the
transaction fails, the operation is reverted by rewriting the original contents of the file back. Will this
approach work? If so motivate your answer, or if not explain why or describe a problem which can be
encountered.

7. Follow the tutorial Beautiful Concurrency. If you have any questions, ask the TAs in the working group
session.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/beautiful.pdf

