
Department of Information and Computer Science
Utrecht University

INFOB3CC: Work & Span
Trevor L. McDonell

January 22, 2024

Introduction
Use these tasks to practice the topics of the lectures. You may have to do some research to read up on terms
or topics not (yet) covered in the lectures.

Efficient and optimal

A parallel algorithm has two asymptotic complexity parameters—work and span—both expressed as a func-
tion of the input size n. For parallel algorithms we sometimes accept that the work is higher than that
of the best sequential algorithm. The ratio of work divided by the best sequential time is the parallelisa-
tion overhead. An algorithm is called efficient when the span is poly-logarithmic and the overhead is also
poly-logarithmic. An algorithm is called optimal when the span is poly-logarithmic and the overhead is
constant.

The Master Theorem

The Master Theorem immediately gives you the asymptotic solution for recurrence relations of the form
T (n) = aT

(
n
b

)
+ f(n). You should compare logb a with the power of n in f(n), so ignore any log factors in

f . If nlogb a or f(n) has a greater n-power than the other, that is the answer. If the exponents are the same,
an extra log-factor must be added (on top of any logs in f that you now do not ignore any more).

For details, see the lecture.

Questions
1. Parallel algorithms can often use recursion efficiently, for example using a divide-and-conquer strategy.

We want to write a method sum(A, p, q) which calculates the sum of all numbers in A in the range
[p, q). (That is: p included, q excluded.) Consider the following method which computes the sum of an
array recursively:

1 sum(A, p, q)
2 if (p == q-1)
3 return A[p]
4

5 m = p + (q - p) / 2
6 s = async (sum(A, p, m)) // run in separate thread
7 t = async (sum(A, m, q)) // run in separate thread
8 return s+t // assume this waits for the results

(a) What is the work of this algorithm?
(b) What is the span of this algorithm?

2. Given an array of n numbers sorted in ascending order, we want to compute the smallest difference
between two consecutive numbers δ. For example, given the array:



Concurrency January 22, 2024

xs = [1,3,5,7,8,12,14,25]

Then δ = 1 (namely the difference between 7 and 8). The best possible sequential algorithm costs Θ(n)
steps.
(a) Give a parallel divide-and-conquer algorithm for computing the minimum difference between con-

secutive elements of an array.
(b) Analyse the work and span of your algorithm using the Master Theorem
(c) Is the algorithm efficient and optimal?

3. Sara has developed a parallel algorithm with work Θ(n3) and span Θ(log3 n).
(a) What is the (asymptotic) running time for this algorithm with a linear (Θ(n)) number of processors?
(b) At how many processors will the algorithm become (asymptotically) span-bound?

4. The length of a greedy schedule can vary depending on which ready steps the scheduler chooses in each
round.
(a) Give an example of a calculation graph and two greedy schedules, each on three cores, where one

schedule takes at least one and a half times as long as the other.
(b) Is it possible to give an example where a bad greedy schedule is more than two and a half times as

long as the other?

5. A parallel calculation with work W and span S must be done on a machine with P processors and you
want to do this according to a greedy schedule.
(a) Describe how a greedy schedule is created.
(b) Why is the length T of this schedule limited by (W/P ) + S?
(c) Your boss does not think this is fast enough. He claims your competitor is four times faster. Can

you catch up with your competitor with better scheduling?

6. For a certain task, you have a parallel algorithm A with work WA and span SA. There is an alternative
algorithm B with higher work WB > WA but lower span SB < SA. For what number of processors P
do you estimate algorithm B to have a lower (asymptotic) calculation time than A?

7. Consider a function maxOneRow which computes the longest sequence of consecutive ones in a number, for
example maxOneRow 0101100111110011111110 = 7. You can calculate the maxOneRow function using a
recursive function which returns three values from the row of bits:

• p: the number of ones with which the row starts
• i: the length of the longest sequence of ones in this segment
• s: the number of ones with which the row ends

(a) What is the best sequential time to calculate the maxOneRow?
(b) How do you find the values of p, i, and s of a row of digits given those values for the left half and

the right half of the range?
(c) Analyse the work of the resulting algorithm.
(d) Analyse the span of the resulting algorithm.
(e) Is the parallel algorithm efficient and optimal?

8. Ada has developed a parallel algorithm with work Θ
(
n1.5

)
and span Θ

(
log3 n

)
. Gabriëlle thinks that

her own algorithm for the task is better, since the span is only Θ
(
log2 n

)
, although the work is Θ

(
n2

)
.

(a) Which algorithm will perform (asymptotically) better with a linear Θ(n) number of processors?
Motivate your response.



Concurrency January 22, 2024

(b) Which algorithm will perform (asymptotically) better with a quadratic Θ
(
n2

)
number of processors?

Motivate your response.
(c) For what number of processors is Ada’s algorithm (asymptotically) faster?

9. Mergesort is a divide-and-conquer comparison-based sorting algorithm. To sort an array, the algorithm
will recursively sort the first and last halves of the input, and then merge the two sorted sub-arrays.
Recall that the complexity of the standard sequential Mergesort algorithm is O(n logn).
(a) Analyse the span of parallel mergesort, in which the two recursive calls are done in parallel, and

merging the sub-arrays is performed sequentially in O(n) time.
(b) Is the algorithm from part (a) efficient and is it optimal? Explain your response.
(c) If the merging of the sub-arrays can be done in parallel in O(logn) time, what does that mean for

the work and span of the mergesort algorithm? Using this merging technique is the mergesort
algorithm efficient and is it optimal? Explain your response.

10. A polynomial p of degree n is an expression in the form:

p(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n

where we can store the polynomial coefficients a in an array of size n+ 1.
(a) To add two polynomials a and b to produce a new polynomial c, it suffices to add the coefficients:

ci = ai + bi. Give a parallel algorithm that calculates the sum of two polynomials with the lowest
possible work and span. Motivate your response.

(b) Melinda discovers that you can multiply two polynomials of degree n−1 by making four independent
multiplications of degree n

2 − 1 and three polynomial additions of degree n − 1. Analyse the work
and span of Melinda’s algorithm.

(c) Sara tells Melinda that the product can also be calculated by six additions of degree n−1 and three
independent multiplications of degree n

2 − 1. Analyse the work and span of Sara’s algorithm.


