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Expectation

The expected value of discrete random variable Y is:

E (Y ) =
∑
y

y P(Y = y)

Since Y ∈ {0, 1} we get:

E (Y | X ) = 1×P(Y = 1 | X )+0×P(Y = 0 | X ) = P(Y = 1 | X )

Data-analysis and Retrieval 2 / 20



Logit Transformation

Logistic regression assumption:

P(Y = 1 | X ) =
eβ0+β1X

1 + eβ0+β1X

Therefore

P(Y = 0 | X ) = 1− P(Y = 1 | X ) =
1

1 + eβ0+β1X
,

and hence the odds are

P(Y = 1 | X )

P(Y = 0 | X )
= eβ0+β1X

Finally, the log-odds are

ln

(
P(Y = 1 | X )

P(Y = 0 | X )

)
= β0 + β1X
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Decision boundary and classification rule

Classes are equally likely when

P(Y = 1 | X )

P(Y = 0 | X )
= 1

and hence

ln

(
P(Y = 1 | X )

P(Y = 0 | X )

)
= 0

So the decision boundary is

β0 + β1X = 0

Assign to class 1 if β0 + β1X > 0 and to class 0 otherwise.
If β1 > 0: Assign to class 1 if X > −β0

β1
and to class 0 otherwise.

If β1 < 0: Assign to class 1 if X < −β0
β1

and to class 0 otherwise.
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Linear Decision Boundary (one predictor, β1 > 0)

−β0

β1

class 0
class 1

x
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Linear Decision Boundary (two predictors)

x1

x2

β0 + β1x1 + β2x2 = 0

Class 0

Class 1
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Maximum Likelihood Estimation: Coin Tossing

Y = 1 if heads, Y = 0 if tails. p = P(Y = 1).

In a sequence of 10 coin flips we observe
y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0).

The likelihood function is

P(y|p) = p · (1− p) · p · p · (1− p) · p · p · p · p · (1− p)

= p7(1− p)3

The corresponding log-likelihood function is

lnP(y|p) = ln(p7(1− p)3) = 7 ln p + 3 ln(1− p)
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Computing the maximum

To determine the maximum we take the derivative and equate it to
zero (note that d ln x

dx = 1
x )

d lnP(y|p)

dp
=

7

p
− 3

1− p
= 0

which yields maximum likelihood estimate p̂ = 0.7.

This is just the relative frequency of heads in the sample.
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Log-likelihood function for y = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0)
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ML estimation for logistic regression

Logistic regression is a bit like the coin tossing example, except
that now the probability of success depends on xi :

p(xi ) = P(Yi = 1 | xi ) =
eβ0+β1xi

1 + eβ0+β1xi

1− p(xi ) = P(Yi = 0 | xi ) =
1

1 + eβ0+β1xi
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ML estimation for logistic regression

Example

i xi yi

1 8 0

2 12 0

3 15 1

4 10 1

Likelihood function:(
1

1 + eβ0+8β1

)(
1

1 + eβ0+12β1

)(
eβ0+15β1

1 + eβ0+15β1

)(
eβ0+10β1

1 + eβ0+10β1

)
Unlike with linear regression there is no closed-form solution for
the maximum likelihood estimates in logistic regression.
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Interpretation

We have

ln

{
P̂(Y = 1 | x)

P̂(Y = 0 | x)

}
= −10.6513 + 0.0055x ,

so with every additional 100 dollars we owe, the log odds increase
with 100× 0.0055 = 0.55.

The odds are multiplied by e0.55 ≈ 1.73 so with every additional
100 dollars we owe, the odds increase with 73%.

When x increases with one unit, the odds are multiplied by eβ1

because:

eβ0+β1(x+1) = eβ0+β1x+β1 = eβ0+β1x × eβ1 ,

since ea+b = ea × eb.
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Interpretation

Note that the effect of an increase in balance on the probability of
default depends on the value of balance:

An increase from 1000 to 1100 dollars leads to an increase of
the probability of default from 0.006 to 0.01.

An increase from 1900 to 2000 dollars leads to an increase of
the probability of default from 0.45 to 0.59.

The effect depends on where we are on the S-curve.
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Confounding

student

default

balance−
+

+

If balance is not included as a predictor, then the indirect
influence of student on default via balance is attributed to
student.

If balance is included as a predictor as well, then the effects of
student and balance on default are separated from each other.
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Example: Cushing’s Syndrome

Hypertensive disorder associated with over-secretion of cortisol by
the adrenal gland. The observations are urinary excretion rates of
two steroid metabolites.

The Cushings data frame (in library MASS) has 27 rows and 3
columns:

Tetrahydrocortisone: urinary excretion rate (mg/24hr).

Pregnanetriol: urinary excretion rate (mg/24hr).

Type: underlying type of syndrome

a (adenoma)
b (bilateral hyperplasia)
c (carcinoma)
u for unknown (not used in fitting models)
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Fitting a Multinomial Logit Model in R

> library(MASS)

> library(nnet)

> data(Cushings)

> mycush <- Cushings

> dimnames(mycush)[[2]] <- c("Tetra","Preg","Type")

> cush.multinom <- multinom(Type~log(Tetra)+log(Preg),

data=mycush[1:21,],maxit=500)

# weights: 12 (6 variable)

initial value 23.070858

iter 10 value 6.623970

iter 20 value 6.214841

iter 30 value 6.182968

iter 40 value 6.172650

iter 50 value 6.167699

iter 60 value 6.162723

iter 70 value 6.156685

iter 80 value 6.155298

iter 90 value 6.153807

iter 100 value 6.152597

iter 110 value 6.152041

iter 120 value 6.151229

final value 6.151167

converged
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Multinomial Logit: The Fitted Model

> summary(cush.multinom)

Call:

multinom(formula = Type ~ log(Tetra) + log(Preg), data = mycush[1:21,

], maxit = 500)

Coefficients:

(Intercept) log(Tetra) log(Preg)

b -19.99566 14.37357 -0.2450327

c -28.83773 16.23923 3.3561273

Std. Errors:

(Intercept) log(Tetra) log(Preg)

b 18.43773 13.70268 0.6691037

c 18.71154 13.35303 2.0981000

Residual Deviance: 12.30233

AIC: 24.30233
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Decision Boundary: a-b (red), a-c (blue), b-c (purple)
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Decision Boundary
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Prediction and Confusion Matrix

> cush.pred <- predict(cush.multinom,mycush[1:21,],type="class")

> cush.confmat <- table(mycush[1:21,3],cush.pred)

> cush.confmat

cush.pred

a b c

a 5 1 0

b 2 7 1

c 0 1 4

u 0 0 0

# Accuracy

> 16/21

[1] 0.7619048
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