Data-analysis and Retrieval
Word Embeddings

Ad Feelders

Universiteit Utrecht

Data-analysis and Retrieval 1/45

Word Vectors

@ Represent words as vectors of real numbers.
@ Related words should have similar vectors.
o As measured by their cosine similarity.

@ How is this useful?

Data-analysis and Retrieval

Application to Home Depot

o Given a query g, return relevant products, based on their
descriptions d.

o Quantify how well the query-product pair (g, d) matches.

@ Query contains “screw”, product description contains “bolt":
no match!

@ But these words represent strongly related objects.
@ Hence, their word vectors Vscrew and vyor Should be similar.

@ Using word vector representations we should be able to
compute a better matching score.

Data-analysis and Retrieval 3 /45

Learning word vectors from data

@ A word’s meaning is determined by the words that frequently
appear close-by:
“You shall know a word by the company it keeps”
(J. R. Firth).

@ When a word w appears in a text, its context is the set of
words that appear nearby (within a fixed-size window).

o To learn word vectors from a text corpus, we use the many
contexts of w in the corpus to build up a word vector
representation of w.

Data-analysis and Retrieval 4 /45

Word2vec skip-gram model

Example sentence from the home depot corpus:

The cultured marble vanity top has a rectangular
integral sink basin to make cleaning easier.

plwi-zfw) p(wesa|wy)
sz+1|wz)
p(wi—1|wy)
cultured marble top has a
Wi_9 Wy_1 Wy W41 Wi42

The center word is boxed. In this example, m = 2.

Data-analysis and Retrieval

Word2vec skip-gram model

Try to predict words in the context of the center word.
The likelihood-function is:

T

(=TI TI pwerilweo)
t=1\ - m<j<m
J#0

The negative log-likelihood is given by:

]~

0o) = - Z log p(we+j | we: 6)

-m<j<m
J#0

Il
—

t

Data-analysis and Retrieval 6 /45

Word2vec skip-gram model

In the model there is only one probability for each (outside word,
center word) pair o, c:

-

exp(u, ve)

plo]) = cpiite ¥e)
szl EXp(UW VC)

This is the softmax function that we know from multinomial

logistic regression.

(1)

According to the model, words with similar word vectors (as
measured by their dot product) are more likely to appear in each
other’s context.

Data-analysis and Retrieval

Word2vec skip-gram

Training data:

center word (c) outside word (o) probability (p(o | ¢))

vanity cultured p(cultured | vanity)
vanity marble p(marble | vanity)
vanity top p(top | vanity)
vanity has p(has | vanity)

top marble p(marble | top)

Data-analysis and Retrieval 8 /45

Word2vec skip-gram

@ To maximize the likelihood, we should give high probability to
events that occur often, and low probability to events that
occur seldom.

@ So to maximize the likelihood, p(o | ¢) will be given a
relatively large value if o often appears in the context of c.

o Likewise, p(o | ¢) will be given a relatively small value if o
hardly ever appears in the context of c.

@ This is accomplished by making the dot product of their word
vectors relatively large, respectively small.

Each word has two vector representations; one as an outside word
(u), and one as a center word (v).

These are the parameters 6 of the model that we have to learn
from the data.

Data-analysis and Retrieval 9 /45

Optimization (single variable)

Suppose we want to find the value of x for which the function
y =f(x)
is minimized (or maximized).

From calculus we know that a necessary condition for a minimum is:

df
=0 2
™ (2)
This condition is not sufficient, since maxima and points of inflection also
satisfy equation (2). Together with the second-order condition:

df

i 0, (3)

we have a sufficient condition for a local minimum.

Data-analysis and Retrieval

Optimization (single variable)

The equation
df
dx
may not have a closed form solution however.

0

In such cases we have to resort to iterative numerical procedures
such as gradient descent.

Data-analysis and Retrieval 11 / 45

Optimization (single variable)

z* T

The derivative at x = x* is positive, so to increase the function
value we should increase the value of x, i.e. make a step in the
direction of the derivative.
df
Af =~ —(x = x*)Ax

dx

Data-analysis and Retrieval

Gradient Descent Algorithm (single variable)

The basic gradient-descent algorithm is:

@ Set t =0, and choose an initial value x(©)
@ determine the derivative
df

2 = (D)
dX(X x\H)

of f(x) at x(t) and update
df
(1) — (O _ =0 (x = x(®)
X X ndX(x x\H)

Set t =t+ 1
© Repeat the previous step until
df
ol 0
and check if a (local) minimum has been reached.

n > 0 is the step size (or learning rate).

Data-analysis and Retrieval 13 / 45

Optimization (multiple variables)

Suppose we want to find the values of xi, ..., X, for which the function
y="1f(x1,...,%p)
is minimized (or maximized).

Analogous to the single-variable case a necessary condition for a minimum
is:

of

0

9%
Again this condition is not sufficient, since maxima and saddle points also
satisfy (4). For the second order condition the Hessian matrix H, should
be positive definite.

j=1....p (4)

Data-analysis and Retrieval 14 / 45

The Gradient

The gradient V£ of
f(xi,Xx2,...,%p),

is defined to be the vector of partial derivatives

of
Ox1

of
Vf=| 9
of
Oxp

Data-analysis and Retrieval

Gradient of a Linear Function

The gradient of a linear function

p
f(x) = a-l—Zb,'X,- —a+b'x
i=1

is given by
of
ox by
of
vi=| e | = | 2| Zp
of '
7% e

Furthermore, we have:
Af = b'Ax = VFT Ax

In which direction should we move to maximize Af?

Data-analysis and Retrieval

Gradient Descent

We restrict Ax to have unit length. Let’s call this vector u
(for unit length). So now we have

Af =VFfTy
In which direction u does f increase the fastest?

Let o denote the angle between V£ and u, then (cosine similarity)

Vitu _VfTu
IVElllul VAL

cos(ar) =

since |lu|| = 1.

Data-analysis and Retrieval

Gradient Ascent

Multiplying both sides by ||V]|, we get:
V' u = cos(a)|VF|

So now we have
Af = cos(a)|| V£

cos() achieves its maximum value of +1, when the angle « is 0
(0 radians), that is, the two vectors point in the same direction.

Hence, to maximize Af we should choose u to point in the same
direction as the gradient.

‘The gradient points in the direction of fastest increase of f. ‘

Data-analysis and Retrieval 18 / 45

The Cosine Function

f(x)=cos(x)

Data-analysis and Retrieval 19 / 45

Gradient Descent

Likewise, cos(a) achieves its minimum value of —1, when the
angle v is 180° (7 radians), that is, the two vectors point in
opposite directions.

Hence, to minimize Af we should choose u to point in the
opposite direction of the gradient.

Minus the gradient points in the direction of fastest decrease of f.

Data-analysis and Retrieval

Local Linear Approximation

@ Thus far we only considered linear functions.

o The functions of interest (e.g. likelihood functions) are
non-linear.

@ The result can however be applied to arbitrary functions by
considering a local linear approximation to the function at a
point x*

of

of
Af ~ % —(x=x")Ax; + (9_2(X = x")Axy.

Data-analysis and Retrieval

Local Linear Approximation by Tangent Plane

Data-analysis and Retrieval

Gradient Descent Algorithm

The basic gradient-descent algorithm is:
@ Set t =0, and choose an initial value x(©)
Q@ determine the gradient V£ (x(9)) of f(x) at x(*) and update

KD — (0 ()

Sett=1t+1.
© Repeat the previous step until

Vix®) =0

and check if a (local) minimum has been reached.

n > 0 is the step size (or learning rate).

Data-analysis and Retrieval

Example of gradient descent

Note: by and b; are the variables here!

i|x y|y=by+bix|e=y—y
110 1] b 1— by
211 3| bg+ b 3—byg— b1
312 4| bg+2bg 4 — by —2b;
413 3| byg+3b 3—byg—3b;
514 5| bg+4b; 5—by—4b;

RSS(bo, b1) = (1 —bo)?+ (3 — b — b1)?
+(4 — by — 2b1)? + (3 — by — 3b;)?
+(5 — by — 4b1)?

Data-analysis and Retrieval

Example of gradient descent

The gradient is:

wn

> 324 10bg + 20b

— N 0 1

VRSS =1 jRss | = [—80 + 20bg + 60b;]
oby

Let b(®) = (0,0). Then the gradient evaluated in the point b(® is:

oy | —32+10%x0+20x0] [—32
VRSS()_[—80+20><0+60><0 80

Local linear approximation:

ARSS =~ —32Aby — 80Ab;

Data-analysis and Retrieval

Example of gradient descent

Let n = %. Then we get the following update:

1) (0) ORSS 1

by’ =by’ —n Dby =0- 50 x —32 = 0.64
1) (0) ORSS 1 1

by’ = b —nabl —0——50 x —80=1.6

Or all at once:

0.64
Ob 0 —80 1.6

Data-analysis and Retrieval

Gradient Descent with step size n = 0.02

Data-analysis and Retrieval

GloVe

The GloVe error function is:

%

where Xj; denotes the number of times word j occurs in the context of
word i, and
F(x) = (x/Xmax)® if x < Xmax
1 otherwise.
If word i often appears nearby word j, then log Xj; is big, and training will
make the dot product between u; and v; big as well, in order to match
their co-occurrence count.

Hence: words that often appear close to each other will get similar word
vectors.

Data-analysis and Retrieval

Weighting function

0.8
06
f(Xi5)
04
02

00 L . L L L X”

xmax

Figure 1: Weighting function f with @ = 3/4.

Data-analysis and Retrieval

GloVe: gradient descent

Let
Ej = 5f(Xy)(u vj — log X;)?,

denote the error corresponding to cell (/,) of the co-occurrence
matrix. The partial derivatives are:

Jo = Xi)(u v — log Xj)vy

OE;;

B = F(Xi)(uj' vj — log Xjj)uj
Vi

Gradient descent update step:

D = o — i OGP — tog X))

]

Vj(t+1) _ \/J(t) —n % f(XIJ)(u,T(t) V_](t) — IOg XU)u,(t)

Data-analysis and Retrieval

Word analogy task

Answer questions like: aisto bas cisto...?

@ Semantic: “Athens is to Greece as Berlin is to ...?
@ Syntactic: “Dance is to dancing as fly is to ...?"

One would desire that
VGreece — VAthens ~ vGermany — VBerlin
Find the word d whose word vector vy is the closest to

VGreece — Vathens + VBerlin »

according to cosine similarity. Only the exact correspondence
d = Germany counts as a correct match.

Data-analysis and Retrieval

Accuracy on word analogy task

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B | 42 164 108
GloVe 100 1.6B | 67.5 543 603
SG 300 1B 61 61 61
CBOW 300 1.6B | 16.1 52.6 36.1
vLBL 300 1.5B | 542 648 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 703
SVD 300 6B 6.3 8.1 7.3
SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW'™ 300 6B | 63.6 674 657
SGF 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 670 71.7
CBOW 1000 6B | 57.3 68.9 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 819 69.3 75.0

Data-analysis and Retrieval

Influence of vector dimension and window size

[—
Accuracy [%]
i)
e
g 8

&

100 2

00 300 400 500 600 4
Vector Dimension

6 5 7 T q
Window Size Window Size
(a) Symmetric context (b) Symmetric context (c) Asymmetric context

Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Data-analysis and Retrieval

Influence of corpus size

- Semantic - Syntactic - Overall

Accuracy [%)]

Gi ds
Wiki2010 Wiki2014 Gigawords igawords +

Wiki2014 Common Craw!

1B tokens 1.6B tokens 4.3B tokens 6B tokens 42B tokens

Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

Data-analysis and Retrieval

GloVe: Toy Example

"I like to drink orange juice.

I

HoH H H H H H H H H H H - H

don’t like to
like to drink
don’t like to
like to drink
don’t like to
like to drink
don’t like to
like to drink
don’t like to
like to drink
don’t like to
like to drink
don’t like to
like to drink
don’t like to

Data-analysis and Retrieval

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

orange juice.

drink apple juice.

GloVe: Toy Example

library(text2vec)

library(tm)

txt <- scan("C:/DAR 2019/toy.txt",what="character")

txt <- removePunctuation(txt)

it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
vocab = create_vocabulary(it)

V V.V V V Vv

> vocab

Number of docs: 1

0 stopwords:

ngram_min = 1; ngram_max = 1

Vocabulary:

term term_count doc_count
1: apple 8 1
2 dont 8 1
3: orange 8 1
4: drink 16 1
5: i 16 1
6: juice 16 1
7 like 16 1
8 to 16 1

Data-analysis and Retrieval 36 / 45

GloVe: Toy Example

> vectorizer = vocab_vectorizer(vocab)
compute term co-occurrence matrix (tcm) with window size = 2
> tcm = create_tcm(it, vectorizer, skip_grams_window = 2L)
> tcm
8 x 8 sparse Matrix of class "dgTMatrix"
apple dont orange drink i juice like to

apple . . . 8 3.5 8 . 4
dont 8.0 4 8.0 4
orange . . . 8 4.0 8 . 4
drink 8 8.0 16
i . . . - 15 12.0 4
juice 3.5
likeo 16
to

Data-analysis and Retrieval

GloVe: Toy Example

train the word vectors

> glove = GlobalVectors$new(rank = 3, x_max = 10)

> wv_main = glove$fit_transform(tcm, n_iter = 100,
convergence_tol = 0.01, learning rate=0.001)

> wv_context = glove$components
add center vectors and context vectors
> word_vectors = wv_main + t(wv_context)
> word_vectors

[,1] [,2] [,3]
apple 0.21094299 -0.9846557 0.5689361
dont -0.04181674 1.3585625 0.7532957
orange 0.40341986 -0.5874701 0.6021801
drink 0.19814930 -0.8773270 0.3185843
i 0.22016927 0.5890721 1.8129052
juice 0.36769405 -1.2219923 1.8221069

like -0.05956698 0.4269785 -0.1197119
to 0.16924874 -0.8205703 -0.2006241

Data-analysis and Retrieval 38 / 45

GloVe: Toy Example

compute cosine similarity between "apple" and other words
> apple = word_vectors["apple", , drop = FALSE]
> cos_sim = sim2(x = word_vectors, y = apple, method = "cosine", norm = "12")
> cos_sim
apple
apple 1.0000000
dont -0.5107285
orange 0.9323933
drink 0.9848749
i .2243131
juice 0.9007214
like -0.9683208
to .7321403

o

o

> sort(cos_sim[,1], decreasing = TRUE)
apple drink orange juice to i dont like
1.0000000 0.9848749 0.9323933 0.9007214 0.7321403 0.2243131 -0.5107285 -0.9683208

Note that “orange” is very similar to “apple”, even though they never appear in each other’s context!

Data-analysis and Retrieval

Application to Home Depot data

#
>
>
#
>

load libraries

library(text2vec)

library(tm)

read product descriptions

product.dat <- read.csv("C:/DAR 2019/
product_descriptions.csv", stringsAsFactors=FALSE)
select product descriptions

> txt <- product.dat[,2]

H

remove punctuation
txt <- removePunctuation(txt)
convert letters to lower case
txt <- tolower (txt)

vV # V #

Data-analysis and Retrieval

Application to Home Depot data

txt is a vector of type chr (= string)

> str(txt)

chr [1:124428] "not only do angles make joints stronger
they also provide ..."

> length(txt)

[1] 124428

> txt[1]

[1] "not only do angles make joints stronger ..."

> it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)

extract vocabulary from product descriptions
> vocab = create_vocabulary(it)

how many "words"?

> dim(vocab)

[1] 364758 3

Data-analysis and Retrieval

Application to Home Depot data

reduce the size of the vocabulary
> vocab = prune_vocabulary(vocab, term_count_min
doc_proportion_max = 0.8,doc_proportion_min

vocab_term_max = 20000)

how many words are left?
> dim(vocab)
[1] 6563 3

show the first three

> vocab[1:3,]

Number of docs: 124428

0 stopwords:

ngram_min = 1; ngram_max = 1

Vocabulary:

term term_count doc_count
1: with 250258 98674
2: of 229820 91535
3: is 192208 87733

Data-analysis and Retrieval

= 10,
= 0.001,

Application to Home Depot data

>
#
>
#
>
>

vectorizer = vocab_vectorizer(vocab)

create term co-occurrence matrix with window-size 5

tcm = create_tcm(it, vectorizer, skip_grams_window = 5L)

train the word vectors

glove = GlobalVectors$new(rank = 50, x_max = 10)

wv_main = glove$fit_transform(tcm, n_iter = 50,
convergence_tol = 0.01)

+*

add center word vectors and context word vectors (u and v)
wv_context = glove$components
> word_vectors = wv_main + t(wv_context)

\4

Data-analysis and Retrieval 43 / 45

Application to Home Depot data

show the first 5 components of the first 3 word vectors
each word vector has 50 components (as specified in training)

> word_vectors[1:3,1:5]

[,1] [,2] [,3] [,4] [,5]
with 0.1572956 -0.4986556 -0.30388024 -0.5208205 -0.49814761
of 0.5462567 -0.3089656 -0.40487972 0.3400864 -0.16796595
is -0.3926085 -0.9640168 0.08781935 0.3989814 -0.08923554

select the word vector of "screw"

> screw = word_vectors["screw", , drop = FALSE]

compute its cosine similarity with all other word vectors

> cos_sim = sim2(x = word_vectors, y = screw, method = "cosine",
norm = "12")

show the 5 closest words

> head(sort(cos_sim[,1], decreasing = TRUE), 5)

screw screws head hex bolts
1.0000000 0.7952427 0.6618135 0.6532096 0.6130304

Data-analysis and Retrieval 44 / 45

Required:
@ Chapter 6 of the book Speech and Language Processing by
Jurafsky en Martin.
Additional:

o Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation.
https://nlp.stanford.edu/projects/glove/

o Text2vec R package: http://text2vec.org/

Data-analysis and Retrieval

