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Word Vectors

Represent words as vectors of real numbers.

Related words should have similar vectors.

As measured by their cosine similarity.

How is this useful?
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Application to Home Depot

Given a query q, return relevant products, based on their
descriptions d .

Quantify how well the query-product pair (q, d) matches.

Query contains “screw”, product description contains “bolt”:
no match!

But these words represent strongly related objects.

Hence, their word vectors vscrew and vbolt should be similar.

Using word vector representations we should be able to
compute a better matching score.
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Learning word vectors from data

A word’s meaning is determined by the words that frequently
appear close-by:

“You shall know a word by the company it keeps”
(J. R. Firth).

When a word w appears in a text, its context is the set of
words that appear nearby (within a fixed-size window).

To learn word vectors from a text corpus, we use the many
contexts of w in the corpus to build up a word vector
representation of w .
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Word2vec skip-gram model

Example sentence from the home depot corpus:

The cultured marble vanity top has a rectangular

integral sink basin to make cleaning easier.

... cultured marble vanity top has a ...

p(wt−2|wt)

p(wt−1|wt)

p(wt+2|wt)

p(wt+1|wt)

wtwt−2 wt−1 wt+1 wt+2

The center word is boxed. In this example, m = 2.
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Word2vec skip-gram model

Try to predict words in the context of the center word.

The likelihood-function is:

L(θ) =
T∏
t=1

 ∏
−m ≤ j ≤ m

j 6=0

p(wt+j | wt ; θ)


The negative log-likelihood is given by:

`(θ) = −
T∑
t=1

 ∑
−m ≤ j ≤ m

j 6=0

log p(wt+j | wt ; θ)


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Word2vec skip-gram model

In the model there is only one probability for each (outside word,
center word) pair o, c :

p(o | c) =
exp(u>o vc)∑V

w=1 exp(u>w vc)
(1)

This is the softmax function that we know from multinomial
logistic regression.

According to the model, words with similar word vectors (as
measured by their dot product) are more likely to appear in each
other’s context.
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Word2vec skip-gram

Training data:

center word (c) outside word (o) probability (p(o | c))

vanity cultured p(cultured | vanity)
vanity marble p(marble | vanity)
vanity top p(top | vanity)
vanity has p(has | vanity)

top marble p(marble | top)
. . . . . . . . .
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Word2vec skip-gram

To maximize the likelihood, we should give high probability to
events that occur often, and low probability to events that
occur seldom.

So to maximize the likelihood, p(o | c) will be given a
relatively large value if o often appears in the context of c .

Likewise, p(o | c) will be given a relatively small value if o
hardly ever appears in the context of c .

This is accomplished by making the dot product of their word
vectors relatively large, respectively small.

Each word has two vector representations; one as an outside word
(u), and one as a center word (v).

These are the parameters θ of the model that we have to learn
from the data.
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Optimization (single variable)

Suppose we want to find the value of x for which the function

y = f (x)

is minimized (or maximized).

From calculus we know that a necessary condition for a minimum is:

df

dx
= 0 (2)

This condition is not sufficient, since maxima and points of inflection also
satisfy equation (2). Together with the second-order condition:

d2f

dx2
> 0, (3)

we have a sufficient condition for a local minimum.
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Optimization (single variable)

The equation
df

dx
= 0

may not have a closed form solution however.

In such cases we have to resort to iterative numerical procedures
such as gradient descent.
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Optimization (single variable)

f(x)

x

d f
d x(x = x∗)

x∗

The derivative at x = x∗ is positive, so to increase the function
value we should increase the value of x , i.e. make a step in the
direction of the derivative.

∆f ≈ df

dx
(x = x∗)∆x
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Gradient Descent Algorithm (single variable)

The basic gradient-descent algorithm is:

1 Set t = 0, and choose an initial value x (0)

2 determine the derivative

df

dx
(x = x (t))

of f (x) at x (t) and update

x (t+1) = x (t) − η df
dx

(x = x (t))

Set t = t + 1.
3 Repeat the previous step until

df

dx
= 0

and check if a (local) minimum has been reached.

η > 0 is the step size (or learning rate).
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Optimization (multiple variables)

Suppose we want to find the values of x1, . . . , xp for which the function

y = f (x1, . . . , xp)

is minimized (or maximized).

Analogous to the single-variable case a necessary condition for a minimum
is:

∂f

∂xj
= 0 j = 1, . . . , p (4)

Again this condition is not sufficient, since maxima and saddle points also
satisfy (4). For the second order condition the Hessian matrix H, should
be positive definite.
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The Gradient

The gradient ∇f of
f (x1, x2, . . . , xp),

is defined to be the vector of partial derivatives

∇f =


∂f
∂x1

∂f
∂x2
...
∂f
∂xp


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Gradient of a Linear Function

The gradient of a linear function

f (x) = a +

p∑
i=1

bixi = a + b>x

is given by

∇f =


∂f
∂x1

∂f
∂x2
...
∂f
∂xp

 =


b1

b2
...
bp

 = b

Furthermore, we have:

∆f = b>∆x = ∇f >∆x

In which direction should we move to maximize ∆f ?
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Gradient Descent

We restrict ∆x to have unit length. Let’s call this vector u
(for unit length). So now we have

∆f = ∇f >u

In which direction u does f increase the fastest?

Let α denote the angle between ∇f and u, then (cosine similarity)

cos(α) =
∇f >u
‖∇f ‖‖u‖ =

∇f >u
‖∇f ‖ ,

since ‖u‖ = 1.
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Gradient Ascent

Multiplying both sides by ‖∇f ‖, we get:

∇f >u = cos(α)‖∇f ‖

So now we have
∆f = cos(α)‖∇f ‖

cos(α) achieves its maximum value of +1, when the angle α is 0
◦

(0 radians), that is, the two vectors point in the same direction.

Hence, to maximize ∆f we should choose u to point in the same
direction as the gradient.

The gradient points in the direction of fastest increase of f .
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The Cosine Function
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Gradient Descent

Likewise, cos(α) achieves its minimum value of −1, when the
angle α is 180

◦
(π radians), that is, the two vectors point in

opposite directions.

Hence, to minimize ∆f we should choose u to point in the
opposite direction of the gradient.

Minus the gradient points in the direction of fastest decrease of f .
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Local Linear Approximation

Thus far we only considered linear functions.

The functions of interest (e.g. likelihood functions) are
non-linear.

The result can however be applied to arbitrary functions by
considering a local linear approximation to the function at a
point x∗

∆f ≈ ∂f

∂x1
(x = x∗)∆x1 +

∂f

∂x2
(x = x∗)∆x2.
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Local Linear Approximation by Tangent Plane
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Gradient Descent Algorithm

The basic gradient-descent algorithm is:

1 Set t = 0, and choose an initial value x (0)

2 determine the gradient ∇f (x (t)) of f (x) at x (t) and update

x (t+1) = x (t) − η∇f (x (t))

Set t = t + 1.

3 Repeat the previous step until

∇f (x (t)) = 0

and check if a (local) minimum has been reached.

η > 0 is the step size (or learning rate).
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Example of gradient descent

Note: b0 and b1 are the variables here!

i x y ŷ = b0 + b1x e = y − ŷ

1 0 1 b0 1− b0
2 1 3 b0 + b1 3− b0 − b1
3 2 4 b0 + 2b1 4− b0 − 2b1
4 3 3 b0 + 3b1 3− b0 − 3b1
5 4 5 b0 + 4b1 5− b0 − 4b1

RSS(b0, b1) = (1− b0)2 + (3− b0 − b1)2

+(4− b0 − 2b1)2 + (3− b0 − 3b1)2

+(5− b0 − 4b1)2
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Example of gradient descent

The gradient is:

∇RSS =

 ∂RSS
∂b0

∂RSS
∂b1

 =

[
−32 + 10b0 + 20b1
−80 + 20b0 + 60b1

]

Let b(0) = (0, 0). Then the gradient evaluated in the point b(0) is:

∇RSS(b(0)) =

[
−32 + 10× 0 + 20× 0
−80 + 20× 0 + 60× 0

]
=

[
−32
−80

]
Local linear approximation:

∆RSS ≈ −32∆b0 − 80∆b1
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Example of gradient descent

Let η = 1
50 . Then we get the following update:

b
(1)
0 = b

(0)
0 − η

∂RSS

∂b0
= 0− 1

50
×−32 = 0.64

b
(1)
1 = b

(0)
1 − η

∂RSS

∂b1
= 0− 1

50
×−80 = 1.6

Or all at once:

b(1) = b(0) − η∂RSS

∂b
=

[
0
0

]
− 1

50

[
−32
−80

]
=

[
0.64
1.6

]
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Gradient Descent with step size η = 0.02
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GloVe

The GloVe error function is:

E (θ) =
1

2

V∑
i , j=1

f (Xij)(u>i vj − logXij)
2,

where Xij denotes the number of times word j occurs in the context of
word i , and

f (x) =

{
(x/xmax)α if x < xmax

1 otherwise.

If word i often appears nearby word j , then logXij is big, and training will
make the dot product between ui and vj big as well, in order to match
their co-occurrence count.

Hence: words that often appear close to each other will get similar word
vectors.
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Weighting function

Next, we note that Eqn. (6) would exhibit the ex-
change symmetry if not for the log(Xi ) on the
right-hand side. However, this term is indepen-
dent of k so it can be absorbed into a bias bi for
wi . Finally, adding an additional bias b̃k for w̃k

restores the symmetry,

wT
i w̃k + bi + b̃k = log(Xik ) . (7)

Eqn. (7) is a drastic simplification over Eqn. (1),
but it is actually ill-defined since the logarithm di-
verges whenever its argument is zero. One reso-
lution to this issue is to include an additive shift
in the logarithm, log(Xik ) → log(1 + Xik ), which
maintains the sparsity of X while avoiding the di-
vergences. The idea of factorizing the log of the
co-occurrence matrix is closely related to LSA and
we will use the resulting model as a baseline in
our experiments. A main drawback to this model
is that it weighs all co-occurrences equally, even
those that happen rarely or never. Such rare co-
occurrences are noisy and carry less information
than the more frequent ones — yet even just the
zero entries account for 75–95% of the data in X ,
depending on the vocabulary size and corpus.

We propose a new weighted least squares re-
gression model that addresses these problems.
Casting Eqn. (7) as a least squares problem and
introducing a weighting function f (Xi j ) into the
cost function gives us the model

J =
V∑

i, j=1

f
(
Xi j

) (
wT
i w̃ j + bi + b̃j − log Xi j

)2
,

(8)
where V is the size of the vocabulary. The weight-
ing function should obey the following properties:

1. f (0) = 0. If f is viewed as a continuous
function, it should vanish as x → 0 fast
enough that the limx→0 f (x) log2 x is finite.

2. f (x) should be non-decreasing so that rare
co-occurrences are not overweighted.

3. f (x) should be relatively small for large val-
ues of x, so that frequent co-occurrences are
not overweighted.

Of course a large number of functions satisfy these
properties, but one class of functions that we found
to work well can be parameterized as,

f (x) =
{

(x/xmax)α if x < xmax
1 otherwise .

(9)

0.2

0.4

0.6

0.8

1.0

0.0

Figure 1: Weighting function f with α = 3/4.

The performance of the model depends weakly on
the cutoff, which we fix to xmax = 100 for all our
experiments. We found that α = 3/4 gives a mod-
est improvement over a linear version with α = 1.
Although we offer only empirical motivation for
choosing the value 3/4, it is interesting that a sim-
ilar fractional power scaling was found to give the
best performance in (Mikolov et al., 2013a).

3.1 Relationship to Other Models

Because all unsupervised methods for learning
word vectors are ultimately based on the occur-
rence statistics of a corpus, there should be com-
monalities between the models. Nevertheless, cer-
tain models remain somewhat opaque in this re-
gard, particularly the recent window-based meth-
ods like skip-gram and ivLBL. Therefore, in this
subsection we show how these models are related
to our proposed model, as defined in Eqn. (8).

The starting point for the skip-gram or ivLBL
methods is a model Qi j for the probability that
word j appears in the context of word i. For con-
creteness, let us assume that Qi j is a softmax,

Qi j =
exp(wT

i w̃ j )∑V
k=1 exp(wT

i w̃k )
. (10)

Most of the details of these models are irrelevant
for our purposes, aside from the the fact that they
attempt to maximize the log probability as a con-
text window scans over the corpus. Training pro-
ceeds in an on-line, stochastic fashion, but the im-
plied global objective function can be written as,

J = −
∑

i∈corpus
j∈context(i)

log Qi j . (11)

Evaluating the normalization factor of the soft-
max for each term in this sum is costly. To al-
low for efficient training, the skip-gram and ivLBL
models introduce approximations to Qi j . How-
ever, the sum in Eqn. (11) can be evaluated much
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GloVe: gradient descent

Let
Eij = 1

2 f (Xij)(u>i vj − logXij)
2,

denote the error corresponding to cell (i , j) of the co-occurrence
matrix. The partial derivatives are:

∂Eij

∂ui
= f (Xij)(u>i vj − logXij)vj

∂Eij

∂vj
= f (Xij)(u>i vj − logXij)ui

Gradient descent update step:

u
(t+1)
i = u

(t)
i − η × f (Xij)(u

>(t)
i v

(t)
j − logXij)v

(t)
j

v
(t+1)
j = v

(t)
j − η × f (Xij)(u

>(t)
i v

(t)
j − logXij)u

(t)
i
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Word analogy task

Answer questions like: a is to b as c is to . . .?

1 Semantic: “Athens is to Greece as Berlin is to . . .?”

2 Syntactic: “Dance is to dancing as fly is to . . .?”

One would desire that

vGreece − vAthens ≈ vGermany − vBerlin

Find the word d whose word vector vd is the closest to

vGreece − vAthens + vBerlin,

according to cosine similarity. Only the exact correspondence
d = Germany counts as a correct match.
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Accuracy on word analogy task

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ∼
∑
i j

Xi j =

|X |∑
r=1

k
rα
= kH|X |,α , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number Hn,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that Xi j ≥ 1, i.e., |X | = k1/α . Therefore we
can write Eqn. (18) as,

|C | ∼ |X |α H|X |,α . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

Hx,s =
x1−s

1 − s
+ ζ (s) + O(x−s ) if s > 0, s , 1 ,

(20)
giving,

|C | ∼
|X |

1 − α
+ ζ (α) |X |α + O(1) , (21)

where ζ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether α > 1,

|X | =
{
O(|C |) if α < 1,
O(|C |1/α ) if α > 1.

(22)

For the corpora studied in this article, we observe
that Xi j is well-modeled by Eqn. (17) with α =

1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).

4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation wd is closest to wb − wa + wc according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on
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Influence of vector dimension and window size
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Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
α = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.
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Influence of corpus size

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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GloVe: Toy Example

"I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice.

I like to drink orange juice.

I don’t like to drink apple juice."
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GloVe: Toy Example

> library(text2vec)

> library(tm)

> txt <- scan("C:/DAR 2019/toy.txt",what="character")

> txt <- removePunctuation(txt)

> it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)

> vocab = create_vocabulary(it)

> vocab

Number of docs: 1

0 stopwords: ...

ngram_min = 1; ngram_max = 1

Vocabulary:

term term_count doc_count

1: apple 8 1

2: dont 8 1

3: orange 8 1

4: drink 16 1

5: i 16 1

6: juice 16 1

7: like 16 1

8: to 16 1
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GloVe: Toy Example

> vectorizer = vocab_vectorizer(vocab)

# compute term co-occurrence matrix (tcm) with window size = 2

> tcm = create_tcm(it, vectorizer, skip_grams_window = 2L)

> tcm

8 x 8 sparse Matrix of class "dgTMatrix"

apple dont orange drink i juice like to

apple . . . 8 3.5 8 . 4

dont . . . . 8.0 4 8.0 4

orange . . . 8 4.0 8 . 4

drink . . . . . 8 8.0 16

i . . . . . 15 12.0 4

juice . . . . . . 3.5 .

like . . . . . . . 16

to . . . . . . . .
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GloVe: Toy Example

# train the word vectors

> glove = GlobalVectors$new(rank = 3, x_max = 10)

> wv_main = glove$fit_transform(tcm, n_iter = 100,

convergence_tol = 0.01, learning_rate=0.001)

> wv_context = glove$components

# add center vectors and context vectors

> word_vectors = wv_main + t(wv_context)

> word_vectors

[,1] [,2] [,3]

apple 0.21094299 -0.9846557 0.5689361

dont -0.04181674 1.3585625 0.7532957

orange 0.40341986 -0.5874701 0.6021801

drink 0.19814930 -0.8773270 0.3185843

i 0.22016927 0.5890721 1.8129052

juice 0.36769405 -1.2219923 1.8221069

like -0.05956698 0.4269785 -0.1197119

to 0.16924874 -0.8205703 -0.2006241
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GloVe: Toy Example

# compute cosine similarity between "apple" and other words

> apple = word_vectors["apple", , drop = FALSE]

> cos_sim = sim2(x = word_vectors, y = apple, method = "cosine", norm = "l2")

> cos_sim

apple

apple 1.0000000

dont -0.5107285

orange 0.9323933

drink 0.9848749

i 0.2243131

juice 0.9007214

like -0.9683208

to 0.7321403

> sort(cos_sim[,1], decreasing = TRUE)

apple drink orange juice to i dont like

1.0000000 0.9848749 0.9323933 0.9007214 0.7321403 0.2243131 -0.5107285 -0.9683208

Note that “orange” is very similar to “apple”, even though they never appear in each other’s context!
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Application to Home Depot data

# load libraries

> library(text2vec)

> library(tm)

# read product descriptions

> product.dat <- read.csv("C:/DAR 2019/

product_descriptions.csv", stringsAsFactors=FALSE)

# select product descriptions

> txt <- product.dat[,2]

# remove punctuation

> txt <- removePunctuation(txt)

# convert letters to lower case

> txt <- tolower(txt)
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Application to Home Depot data

# txt is a vector of type chr (= string)

> str(txt)

chr [1:124428] "not only do angles make joints stronger

they also provide ..."

> length(txt)

[1] 124428

> txt[1]

[1] "not only do angles make joints stronger ..."

> it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)

# extract vocabulary from product descriptions

> vocab = create_vocabulary(it)

# how many "words"?

> dim(vocab)

[1] 364758 3
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Application to Home Depot data

# reduce the size of the vocabulary

> vocab = prune_vocabulary(vocab, term_count_min = 10,

doc_proportion_max = 0.8,doc_proportion_min = 0.001,

vocab_term_max = 20000)

# how many words are left?

> dim(vocab)

[1] 6563 3

# show the first three

> vocab[1:3,]

Number of docs: 124428

0 stopwords: ...

ngram_min = 1; ngram_max = 1

Vocabulary:

term term_count doc_count

1: with 250258 98674

2: of 229820 91535

3: is 192208 87733
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Application to Home Depot data

> vectorizer = vocab_vectorizer(vocab)

# create term co-occurrence matrix with window-size 5

> tcm = create_tcm(it, vectorizer, skip_grams_window = 5L)

# train the word vectors

> glove = GlobalVectors$new(rank = 50, x_max = 10)

> wv_main = glove$fit_transform(tcm, n_iter = 50,

convergence_tol = 0.01)

# add center word vectors and context word vectors (u and v)

> wv_context = glove$components

> word_vectors = wv_main + t(wv_context)
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Application to Home Depot data

# show the first 5 components of the first 3 word vectors

# each word vector has 50 components (as specified in training)

> word_vectors[1:3,1:5]

[,1] [,2] [,3] [,4] [,5]

with 0.1572956 -0.4986556 -0.30388024 -0.5208205 -0.49814761

of 0.5462567 -0.3089656 -0.40487972 0.3400864 -0.16796595

is -0.3926085 -0.9640168 0.08781935 0.3989814 -0.08923554

# select the word vector of "screw"

> screw = word_vectors["screw", , drop = FALSE]

# compute its cosine similarity with all other word vectors

> cos_sim = sim2(x = word_vectors, y = screw, method = "cosine",

norm = "l2")

# show the 5 closest words

> head(sort(cos_sim[,1], decreasing = TRUE), 5)

screw screws head hex bolts

1.0000000 0.7952427 0.6618135 0.6532096 0.6130304
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