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Literature

Required Literature: Chapter 3 of ISLR by James et al. (videos by
authors available through a link on the course webpage).

The slides of this lecture complement the book, they do not cover
the book! We give a bit more detail on the derivation of the least
squares estimates for the linear regression model.

Please ask questions about the material of part 2 in the channel
Hoorcolleges deel 2 (or during the lecture of course).
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Regression

In regression problems we want to predict a numeric target variable
from one or more predictor variables (features).

Examples:

Predict sale price of a house from lot size, location, has
garage?, etc.

Predict a person’s income from education level, gender, age,
etc.

Predict the number of bugs in a computer program from
code-complexity measures.

Assignment: predict relevance score of product for a query
from match between query text and product description.
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Linear Regression Model

The central assumption of linear regression is

E (Y | X ) = f (X ) = β0 + β1X

Or, alternatively
Y = β0 + β1X + ε

with E (ε | X ) = 0.

Usually, it is also assumed that Var(Y | X ) = σ2, that is, Y has
the same variance for each value of X .
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Minimizing empirical loss

Given training data

D = {(x1, y1), (x2, y2), . . . , (xn, yn)},

find the values of b0 and b1 such that the residual sum of squares

RSS(b0, b1) =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − (b0 + b1xi ))2

is minimized, where ŷi = b0 + b1xi is the predicted value for yi .
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Scatterplot of Training Data
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Error of Line
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Example

i x y ŷ = b0 + b1x e = y − ŷ e2 = (y − ŷ)2

1 0 1 b0 1− b0 (1− b0)2

2 1 3 b0 + b1 3− b0 − b1 (3− b0 − b1)2

3 2 4 b0 + 2b1 4− b0 − 2b1 (4− b0 − 2b1)2

4 3 3 b0 + 3b1 3− b0 − 3b1 (3− b0 − 3b1)2

5 4 5 b0 + 4b1 5− b0 − 4b1 (5− b0 − 4b1)2

RSS(b0, b1) = (1− b0)2 + (3− b0 − b1)2

+(4− b0 − 2b1)2 + (3− b0 − 3b1)2

+(5− b0 − 4b1)2
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Minimizing RSS (single coefficient)

Suppose RSS only depends on a single coefficient b. From calculus
we know that a necessary condition for a minimum is:

d RSS

d b
= 0 (1)

This condition is not sufficient, since maxima and points of
inflection also satisfy equation (1). Together with the second-order
condition:

d2 RSS

d b2
> 0, (2)

we have a sufficient condition for a local minimum.
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Minimizing RSS (multiple coefficients)

Usually RSS depends on multiple coefficients b1, . . . , bp.
Analogous to the single-parameter case a necessary condition for a
minimum is:

∂RSS

∂bj
= 0, for all j = 1, . . . , p (3)

Again this condition is not sufficient, since maxima and saddle
points also satisfy (3).

Together with the second-order condition that the Hessian matrix
(the matrix of second order partial derivatives) is positive definite,
we have a sufficient condition for a local minimum.
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Example

∂RSS

∂b0
= [2(1− b0)(−1)] + [2(3− b0 − b1)(−1)]

+ [2(4− b0 − 2b1)(−1)] + [2(3− b0 − 3b1)(−1)]

+ [2(5− b0 − 4b1)(−1)]

= −32 + 10b0 + 20b1

∂RSS

∂b1
= 0 + [2(3− b0 − b1)(−1)]

+ [2(4− b0 − 2b1)(−2)] + [2(3− b0 − 3b1)(−3)]

+ [2(5− b0 − 4b1)(−4)]

= −80 + 20b0 + 60b1

Data-analysis and Retrieval 11 / 43



Example

Setting partial derivatives to zero gives

10b0 + 20b1 = 32

20b0 + 60b1 = 80

which gives b0 = 1.6 and b1 = 0.8.

So the least squares fitted line is

ŷ = 1.6 + 0.8x
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Fitted Line
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General Solution

We want to minimize

RSS(b0, b1) =
n∑

i=1

(yi − b0 − b1xi )
2

Consider an arbitrary term from this sum:

RSSi = (yi − b0 − b1xi )
2 = e2i ,

where ei = yi − b0 − b1xi . Using the chain rule, we have

∂RSSi

∂b0
=
∂e2i
∂ei

∂ei
∂b0

= (2ei )(−1) = −2(yi − b0 − b1xi )
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General Solution

Partial derivative with respect to intercept:

∂RSS

∂b0
=

∂

∂b0

n∑
i=1

(yi − b0 − b1xi )
2

=
n∑

i=1

∂

∂b0
(yi − b0 − b1xi )

2

= −2
n∑

i=1

(yi − b0 − b1xi )

Equate to zero

n∑
i=1

(yi − b0 − b1xi ) =
n∑

i=1

ei = 0

In the optimal solution, the sum of the errors is zero.
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General Solution

Partial derivative with respect to slope:

∂RSS

∂b1
=

n∑
i=1

2(yi − b0 − b1xi )(−xi )

= −2
n∑

i=1

xi (yi − b0 − b1xi )

Equate to zero

n∑
i=1

xi (yi − b0 − b1xi ) =
n∑

i=1

xiei = 0
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Normal Equations

Expand and collect terms:

n∑
i=1

yi = nb0 + b1

n∑
i=1

xi (4)

n∑
i=1

xiyi = b0

n∑
i=1

xi + b1

n∑
i=1

x2i (5)

To solve for b0 divide (4) by n:

b0 = ȳ − b1x̄ ,

where ȳ = 1
n

∑
yi . Note that ȳ = b0 + b1x̄ , so the line goes

through the “point of means” (x̄ , ȳ).
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Normal Equations

To solve for b1, multiply (4) by
∑

xi and (5) by n∑
xi
∑

yi = nb0
∑

xi + b1
(∑

xi

)2
(6)

n
∑

xiyi = nb0
∑

xi + nb1
∑

x2i (7)

Subtract (6) from (7) and solve for b1:

b1 =
n
∑

xiyi −
∑

xi
∑

yi

n
∑

x2i − (
∑

xi )
2
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Linear regression through the origin

Suppose we know that the population regression line goes through
the origin, i.e.

E (Y | X ) = βX

Find the value of b such that the sum of squared errors

RSS(b) =
n∑

i=1

(yi − bxi )
2

is minimized.
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Linear regression through the origin: calculus solution

Take the derivative

dRSS

db
= −2

∑
(yi − bxi )xi

and equate to zero ∑
xiyi − b

∑
x2i = 0

so we get

b =

∑
xiyi∑
x2i
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Regression through the origin: Geometrical Solution

Regression through the origin: ŷi = bxi

D = {(x1, y1), (x2, y2)} = {(4, 5), (2, 5)} contains only two
observations.

X =

[
x1
x2

]
=

[
4
2

]
and Y =

[
y1
y2

]
=

[
5
5

]

e =

[
e1
e2

]
and Ŷ =

[
ŷ1
ŷ2

]

Ŷ = bX and e = Y − Ŷ = Y − bX
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Least Squares Solution (n dimensional space!)
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Least Squares Solution

The length of e =
√
e · e =

√
e21 + e22 =

√
RSS.

So to minimize RSS, e must be perpendicular to X , i.e. X · e = 0.

X · e = X · (Y − bX ) = X · Y − bX · X = 0

Therefore

b =
X · Y
X · X

=

∑
xiyi∑
x2i

Of course we obtained the same solution as with calculus.

Matrix notation

b =
XTY

XTX
or b = (XTX )−1XTY
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Solution

Solution of the numerical example

XTY = [4 2]

[
5
5

]
= 30

and

XTX = [4 2]

[
4
2

]
= 20

which yields

b =
XTY

XTX
=

30

20
= 1.5
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Fitted line
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Simple linear regression in matrix terms

We can write the observed y values as

yi = b0 + b1xi + ei , i = 1, . . . , n

which is short for

y1 = b0 + b1x1 + e1

y2 = b0 + b1x2 + e2
...

yn = b0 + b1xn + en
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Matrix Notation

We can write this more compactly using matrix notation.
Define:

X =


1 x1
1 x2
...
1 xn

Y =


y1
y2
...
yn

 e =


e1
e2
...
en

 b =

[
b0
b1

]

Then we can simply write

Y = Xb + e
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Check

Y = Xb + e
y1
y2
...
yn

 =


1 x1
1 x2
...
1 xn


[
b0
b1

]
+


e1
e2
...
en



=


b0 + b1x1
b0 + b1x2

...
b0 + b1xn

+


e1
e2
...
en

 =


b0 + b1x1 + e1
b0 + b1x2 + e2

...
b0 + b1xn + en


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Least Squares Solution

Ŷ is a linear combination of the columns of X :

Ŷ = Xb

Typically, Y is not in the column space of X . Find the value of Ŷ
that is closest to Y . For this to be the case, the error vector

e = Y − Xb

must be orthogonal to all columns of X .
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Least Squares Solution (Cartoon!)

col(X)

y

e

ŷ = Xb
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Least Squares Solution

In other words,

XT e = XT (Y − Xb) = XTY − XTXb =

[
0
0

]
,

from which it follows that

XTXb = XTY

Premultiply both sides by the inverse of XTX :

(XTX )−1XTXb = (XTX )−1XTY

We then find, since (XTX )−1XTX = I and Ib = b:

b = (XTX )−1XTY
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Numeric example

D = {(0, 1), (1, 1), (2, 2), (3, 2)}

X =


1 0
1 1
1 2
1 3

 Y =


1
1
2
2


XTX =

[
4 6
6 14

]
XTY =

[
6

11

]
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Numeric Example

Now, since [
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
we get

b = (XTX )−1XTY =
1

20

[
14 −6
−6 4

] [
6

11

]
=

1

20

[
18
8

]
=

[
9/10
4/10

]
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Fitted Line
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Scatterplot of lot size and sale price
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Least Squares fitted line

Using R we find:

sale price = 34, 136 + 6.6× lot size

R2 = 0.2871

R2 = 1−
∑

(yi − ŷi )
2∑

(yi − ȳ)2

There is still room for improvement!
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Least Squares fitted line
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Multiple Linear Regression

Usually, you want to use more that one input variable to predict Y .

The basic assumption is

E (Y |X) = β0 + β1X1 + β2X2 + . . .+ βp−1Xp−1
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Multiple Linear Regression

We can write the observed y values as

yi = b0 + b1xi ,1 + b2xi ,2 + . . .+ bp−1xi ,p−1 + ei

which is short for

y1 = b0 + b1x1,1 + b2x1,2 + . . .+ bp−1x1,p−1 + e1

y2 = b0 + b1x2,1 + b2x2,2 + . . .+ bp−1x2,p−1 + e2
...

yn = b0 + b1xn,1 + b2xn,2 + . . .+ bp−1xn,p−1 + en
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Notation and Least Squares Solution

X =


1 x1,1 x1,2 . . . x1,p−1

1 x2,1 x2,2 . . . x2,p−1
...
1 xn,1 xn,2 . . . xn,p−1



Y =


y1
y2
...
yn

 e =


e1
e2
...
en

 b =


b0
b1
...

bp−1


Then we can write

Y = Xb + e, b = (XTX )−1XTY

Data-analysis and Retrieval 40 / 43



Scatterplot of lot size, airco, and sale price
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Fitted Equation

The fitted regression line is:

sale.price = 32, 693 + 5.6× lot.size + 20, 175× air.cond

If air.cond=0:

sale.price = 32, 693 + 5.6× lot.size

If air.cond=1:

sale.price = (32, 693 + 20, 175) + 5.6× lot.size

R2 = 0.4048

The premium for air conditioning is 20,175 Canadian dollars.
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Fitted Equation
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