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Ordinal Classification

When a variable is ordinal, its categories can be ranked from
low to high, but the distances between adjacent categories are
unknown.

In ordinal classification the class variable is ordinal.
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Logistic Regression Revisited

Consider the linear regression model

y∗ = β>x + ε, E [ε | x] = 0

where y∗ is an unobserved (latent) numeric variable.
We only observe whether y∗ is bigger than a given threshold:

y =

{
1 if y∗ > 0
0 if y∗ ≤ 0

Note the vector notation: x = (1, x1, . . . , xp)> and
β = (β0, β1, . . . , βp)>, so

β>x = β0 +

p∑
j=1

βjxj
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Logistic Regression Revisited

According to this model, the probability that y = 1 is

P(y = 1) = P(y∗ > 0)

= P(β>x + ε > 0)

= P(ε > −β>x)

If the distribution of ε is symmetric around zero, then
P(ε > a) = P(ε < −a), so

P(ε > −β>x) = P(ε < β>x) ≡ F (β>x)

Here F is the cumulative density function (cdf) of ε.
The cdf is defined as

F (z) = P(Z ≤ z) =

∫ z

−∞
f (Z )dZ

where f is the probability density function (pdf) of Z .
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Density and cumulative density
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Standard Normal density and cumulative density function

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f(
x)

 a
nd

 F
(x

)

Data-analysis and Retrieval 6 / 34



The Probit Model

We have established that (under certain assumptions):

P(y = 1) = F (β>x)

Depending on the choice of F (or f ) we get different models.

If we choose ε ∼ N(0, 1), then we get the so-called probit
model:

P(y = 1) = Φ(β>x)

where Φ(·) denotes the standard normal cumulative density
function.

The assumption of unit variance is a harmless normalization.
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ε ∼ N(0, 1) is a harmless normalization.

Suppose we assume instead that ε ∼ N(0, σ2), as is common in
linear regression. First of all, note that

P(y = 1 | x) = P(ε < β>x) = P

(
ε

σ
<
β>x

σ

)
Define u = ε

σ . Then u ∼ N(0, 1). Furthermore, let αj =
βj
σ .

The model with coefficients αj and error term u is “observationally
equivalent” to the model with coefficients βj and error term ε.
They are “observationally equivalent” because they produce the
exact same probabilities for the different Y values. Since Y is all
we observe (not Y ∗), the two models cannot be distinguished from
each other on the basis of observations.
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The Logit Model (Logistic Regression)

For the logit (logistic regression) model

P(y = 1) = Λ(β>x) =
eβ

>x

1 + eβ>x

where Λ(·) denotes the logistic cumulative density function.

Note that this is the logistic response function we have already
seen in one of the previous lectures.
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Normal (red) and logistic (blue) cumulative density
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Alternative Parametrization

Instead of fixing the threshold at zero, we can also remove the
intercept β0 from the model and make the threshold an unknown
parameter. Then we get the model:

y∗ =

p∑
j=1

βjxj + ε, E [ε | x] = 0

where y∗ is still an unobserved (latent) numeric variable.
We only observe whether y∗ is bigger than a threshold t:

y =

{
1 if y∗ > t
0 if y∗ ≤ t
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Generalization to Ordinal Classification

Let m denote the number of classes, where the classes are labeled
{1, 2, . . . ,m}. Then y is defined as follows:

y =


1 if −∞ < y∗ ≤ t1
2 if t1 < y∗ ≤ t2
...

...
m if tm−1 < y∗ <∞

We only observe between which thresholds y∗ falls.

Here t1, . . . , tm−1 are unknown thresholds that have to be
estimated from the data (together with the coefficient vector β).
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Discretization of y ∗

We only observe y , which indicates the interval y∗ falls into.

y*

y1 2 3 4

t1 t2 t3−∞ ∞
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Class Probabilities

We observe y = 1 when y∗ falls between t0 = −∞ and t1. Hence

P(yi = 1 | xi ) = P(t0 ≤ y∗i < t1 | xi )

Substituting y∗i = β>xi + εi , (suppressing condition on xi ) we get

P(yi = 1) = P(t0 ≤ β>xi + εi < t1)

Now we subtract β>xi from all terms in the inequality to get

P(yi = 1) = P(t0 − β>xi ≤ εi < t1 − β>xi )
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Class Probabilities

Continuing from the previous slide:

P(yi = 1) = P(t0 − β>xi ≤ εi < t1 − β>xi )
= P(εi < t1 − β>xi )− P(εi < t0 − β>xi )
= F (t1 − β>xi )− F (t0 − β>xi ),

because P(a ≤ Z ≤ b) = P(Z ≤ b)− P(Z ≤ a) = F (b)− F (a) .

This derivation can be generalized to compute the probability of
any observed outcome yi = j given xi :

P(yi = j | xi ) = F (tj −β>xi )−F (tj−1−β>xi ), j = 1, . . . ,m.
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Class Probabilities

So for a model with four possible classes, the formula’s for the
different outcomes are:

P(yi = 1 | xi ) = F (t1 − β>xi )
P(yi = 2 | xi ) = F (t2 − β>xi )− F (t1 − β>xi )
P(yi = 3 | xi ) = F (t3 − β>xi )− F (t2 − β>xi )
P(yi = 4 | xi ) = 1− F (t3 − β>xi )
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Class Probabilities

t1 t2 t3

X = x1

X = x2

X = x3

area is P (Y = 3 | X = x2)

Y 1 2 3 4

f(y∗) for X = x3

β>x3
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Class Probabilities

Verbal description:

Depending on the value of x, the distribution of y∗ is shifted.

The expected value of y∗ is β>x.

The class probabilities are defined by the area under f (y∗)
between the different thresholds.

In this way, the class probabilities depend on the value of x.
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Maximum Likelihood Estimation

The likelihood function is

L(β, t ; X, y) =
m∏
j=1

∏
i :yi=j

P(yi = j | xi , β, t)

=
m∏
j=1

∏
i :yi=j

[
F (tj − β>xi )− F (tj−1 − β>xi )

]
,

where
∏

i :yi=j indicates we multiply over all cases where y is observed to have
value j .

Taking logs, the log likelihood is equal to

log L(β, t ; X, y) =
m∑
j=1

∑
i :yi=j

log
[
F (tj − β>xi )− F (tj−1 − β>xi )

]
.

This expression can be maximized with numerical methods to estimate the
thresholds tj and vector of coefficients β.
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Maximum Likelihood Estimation

The likelihood function is

L(β, t ; X, y) =
m∏
j=1

∏
i :yi=j

P(yi = j | xi , β, t)

Note that the likelihood score of a model (choice of t, β) only
depends on the probability that it assigns to the correct class.

Homework: Can you think of an argument against using MLE in
ordinal classification?
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Cumulative Class Probabilities

Also, note that:

P(yi ≤ 1 | xi ) = F (t1 − β>xi )
P(yi ≤ 2 | xi ) = F (t2 − β>xi )
P(yi ≤ 3 | xi ) = F (t3 − β>xi )
P(yi ≤ 4 | xi ) = 1

In general we have P(yi ≤ j | xi ) = F (tj − β>xi ).
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Cumulative Class Probabilities

We have seen that:

P(y ≤ j | x) = F (tj − β>x).

In logistic regression we choose for F the logistic cdf

Λ(z) =
exp(z)

1 + exp(z)
,

so we get

P(y ≤ j | x) =
exp(tj − β>x)

1 + exp(tj − β>x)
.

Set of parallel logistic regression models for y ≤ j against y > j :

log

[
P(y ≤ j | x)

P(y > j | x)

]
= tj − β>x
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Interpretation: effect of increase in xk

We have
P(y ≤ j | x) = F (tj − β>x).

Hence

∂P(y ≤ j | x)

∂xk
=
∂F (tj − β>x)

∂xk
=
∂F (z)

∂z

∂z

∂xk

= f (z)×−βk = −βk f (tj − β>x).

f (tj − β>x) is always positive, since f is a probability density function.
So if βk is positive, an increase in xk will lead to a decrease in P(y ≤ j) for all
j = 1, . . . ,m − 1.

Or (same thing), an increase in xk will lead to an increase in P(y ≥ j) for all
j = 2, . . . ,m.

In this specific sense, one can say that if xk increases, higher values of y
become more likely.

Data-analysis and Retrieval 23 / 34



Interpretation for βk positive
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Blue: P(y ≤ j) for xk .
Red: P(y ≤ j) for xk + 1.

The cumulative distribution of y for xk + 1 is entirely below the
cumulative distribution of y for xk .
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Summarizing the Differences

How exactly are the ordered and unordered (= multinomial)
logistic regression model different?

The ordinal model has a single coefficient vector β for all
classes, whereas the multinomial model has a coefficient
vector βk for each class k (except one).

As a consequence the decision boundaries are restricted to be
parallel to each other in the ordinal model. This is quite a
strong constraint!

In the ordinal model the relation between predictor and class
label is monotone, either increasing or decreasing.

For example: if βk is positive, then (all else equal) an increase
in xk makes the higher classes more likely and a decrease in xk
makes the lower classes more likely.
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Fitting the Ordinal Logistic Regression Model in R

> library(MASS)

# fit proportional odds logistic regression model

> wine.polr2 <- polr(quality~density+alcohol,data=wine.dat, Hess=T)

> summary(wine.polr2)

Coefficients:

Value Std. Error t value

density 106.27 0.30531 348.08

alcohol 1.11 0.05267 21.07

Intercepts:

Value Std. Error t value

1|2 111.9811 0.3032 369.3438

2|3 113.8616 0.3057 372.4595

3|4 117.2274 0.3253 360.3388

4|5 119.7431 0.3667 326.5169

5|6 122.6179 0.4476 273.9202
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Prediction Accuracy

# predict class labels

> wine.pred <- predict(wine.polr,wine.dat,type="class")

# construct confusion matrix

> wine.confmat <- table(wine.dat[,12],wine.pred)

> wine.confmat

wine.pred

1 2 3 4 5 6

1 0 0 9 1 0 0

2 0 0 36 17 0 0

3 0 2 503 173 2 1

4 0 0 213 392 33 0

5 0 0 7 138 54 0

6 0 0 0 10 8 0

# compute accuracy

> sum(diag(wine.confmat))/1599

[1] 0.5934959

> summary(wine.dat[,12])

1 2 3 4 5 6

10 53 681 638 199 18

> 681/1599

[1] 0.4258912
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Decision Boundary Ordinal LR on Wine Data
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Fitting the Multinomial Logistic Regression Model

> library(nnet)

# fit multinomial logistic regression model

> wine.multi2 <- multinom(quality~density+alcohol,data=wine.dat)

> summary(wine.multi2)

Coefficients:

(Intercept) density alcohol

2 43.003814 -45.879145 0.4365809

3 68.378492 -62.949698 -0.1396656

4 2.385932 -7.137190 0.8667334

5 -108.347472 93.833526 1.6793355

6 -17.906887 -4.108423 2.0746746

Std. Errors:

(Intercept) density alcohol

2 2.260309 2.274173 0.4522562

3 2.137517 2.146860 0.4289871

4 2.139384 2.141155 0.4282659

5 2.166738 2.182500 0.4334476

6 2.507561 2.531655 0.4810792
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Prediction Accuracy with Multinomial Logit

# predict class labels

> wine.pred.m <- predict(wine.multi2,wine.dat,type="class")

# construct confusion matrix

> wine.confmat.m <- table(wine.dat[,12],wine.pred.m)

> wine.confmat.m

wine.pred.m

1 2 3 4 5 6

1 0 0 7 3 0 0

2 0 0 30 22 1 0

3 0 0 514 161 6 0

4 0 0 267 347 24 0

5 0 0 23 159 17 0

6 0 0 2 10 6 0

# compute accuracy of predictions

> sum(diag(wine.confmat.m))/1599

[1] 0.5490932
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Decision Boundary Multinomial LR on Wine Data
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Comparison of Ordinal and Multinomial Model

> wine.polr.corr <- as.numeric(wine.pred==wine.dat[,12])

> wine.multi.corr <- as.numeric(wine.pred.m==wine.dat[,12])

> wine.comp <- table(wine.polr.corr,wine.multi.corr)

> wine.comp

wine.multi.corr

wine.polr.corr 0 1

0 546 104

1 175 774

# is the difference in error rate (= 1-accuracy) significant?

Null hypothesis:
H0 : epolr = emulti, Ha : epolr 6= emulti

If the null hypothesis is correct then P(cell (1,0)) = P(cell (0,1)) = 1
2 (the other

two cells are ignored).
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Comparison of Ordinal and Multinomial Model

Hence the p-value is

P(X ≤ 104) + P(X ≥ 175), where X ∼ Binom(π = 1
2 , n = 279)

In R we can compute this as

> 2*pbinom(104,175+104,prob=0.5)

[1] 2.531092e-05

# yes, the p-value is smaller than 0.01, which is

# already a very strict significance level

The p-value is very small, so we conclude that the ordinal model has “significantly
higher” accuracy than the multinomial model.
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Exploiting dependence of predictions

If predictions were independent, we would have gotten the following table:

> wine.comp

wine.multi.corr

wine.polr.corr 0 1

0 293 357

1 428 521

# is the difference in error rate (= 1-accuracy) significant?

> 2*pbinom(357,357+428,prob=0.5)

[1] 0.0124263

Now the p-value is much higher for the same difference in accuracy!
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