Data-analysis and Retrieval
Boolean retrieval, posting lists and dictionaries

Hans Philippi
(based on the slides from the Stanford course on IR)

April 26, 2023

Hans Philippi Boolean retrieval, posting lists & dictionaries

1/38

Basics of text searching

o

Collection: fixed set of documents

Goal: retrieve documents that are relevant to the user’s
information need

Practice: user’s information need is expressed by one or more
search terms

Example: you want to book a room in a Hilton hotel for a trip
to Paris

Hans Philippi Boolean retrieval, posting lists & dictionaries 2/38

Information need?

(=

paris hilton book

Web Afbeeldingen Maps Shopping Meer = Zoekhulpmiddelen

Tip: Alleen in het Nederlands zosken U kunt uw zoektaal instellen in de Voorkeuren

Canfessions of an Heiress: A Tongue-in-Chic Peek Behind the Pose ...
www.amazon.com > __» Fashion » Models ~ Vertaal deze pagina

Paris Hilton is exactly what | thought she was, a spoiled little daddy's girl who thinks
everyone should be like her, and it shows through in this book

Afbeeldingen van paris hilton book - Afbeeldingen melden

P

Book Paris Hilton - Wikipedia. the free encyclopedia
en.wikipedia.org/wiki’/Book Paris_Hilton ~ Vertaal deze pagina

This is a Wikipedia book, a collection of Wikipedia articles that can be easily saved
rendered electronically, and ordered as a printed book. For information and ...

ans Philippi Boolean retrieval, posting lists & dictionaries 3/38

Basics

Quality measures for retrieval

@ Precision: fraction of retrieved docs that are relevant to user's
information need (also called selectivity)

@ Recall: fraction of relevant docs in collection that are
retrieved (also called sensitivity)

Hans Philippi Boolean retrieval, posting lists & dictionaries 4/38

Examples of collections

West LaW (http://en.wikipedia.org/wiki/Westlaw)

@ Largest commercial legal search service (started 1975; ranking
added 1992)
@ Tens of terabytes of data; 700,000 users
© Majority of users still use boolean queries
© Example query:
e What is the statute of limitations in cases involving the
federal tort claims act?
e LIMIT! /3 STATUTE /S FEDERAL /2 TORT /3 CLAIM
(! = trailing wildcard, /3 = within 3 words, /S = in same
sentence)

Hans Philippi Boolean retrieval, posting lists & dictionaries 5/38

Collections for research purposes

RCV1, RCV2 (Reuters Corpus Volume 1, 2)

© In 2000 Reuters released a corpus of Reuters News stories for
use in research and development of natural language
processing, information retrieval or machine learning

RCV1 covers 800,000 news articles in English (2.5 GB)
RCV2 covers 487,000 articles in thirteen languages

© 00

More recently: Reuters-21578 for text categorization

Hans Philippi Boolean retrieval, posting lists & dictionaries

Boolean retrieval

@ Basic model for IR

@ Matching of keywords, using logical connectives:
AND, OR, NOT and brackets

© Still used, e.g. in library catalogs

Hans Philippi Boolean retrieval, posting lists & dictionaries

Boolean retrieval

@ Which plays of Shakespeare contain the words Brutus AND
Caesar but NOT Calpurnia?

@ One could grep all of Shakespeare's plays for Brutus and
Caesar, then strip out plays containing Calpurnia . ..

© ... but smarter approaches may be ahead

Hans Philippi Boolean retrieval, posting lists & dictionaries 8/38

Boolean retrieval: term-document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Qthello Macheth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwise

Hans Philippi Boolean retrieval, posting lists & dictionaries 9/38

Boolean retrieval: term-document incidence matrix

@ We have a 0/1 vector for each term

@ To answer query: apply a bitwise AND to the vectors for
Brutus, Caesar and Calpurnia (complemented)

© 110100 AND 110111 AND 101111 = 100100

Hans Philippi Boolean retrieval, posting lists & dictionaries 10/38

Indexing: term-document incidence matrix?

Can we use the term-document incidence matrix for indexing
purposes?
Some typical parameters:
@ number of documents: thousands (libraries) to billions (www)
@ number of terms per document: possibly several thousands

© number of terms in a language (English, Dutch): tens of
thousands (note that the web is multilingual)

© on average 6 bytes/word

For the web, we have the following orders of magnitude:
@ 10'° for the number of web sites

@ roughly 10! to 10'2 for the number of web pages

Hans Philippi Boolean retrieval, posting lists & dictionaries

Indexing: dictionary and postings lists

@ sparse matrix approach
@ documents are identified by a unique number: the doc/D
@ terms are organized in a dictionary, supporting quick searching

@ each term has a postings list: an ordered list of docs
containing this term

Calpurnia = || 2 | 31 | 45| 101 | 112 | 154 | 181
Brutus = 1] 2 4 11 31 45 | 173
Caesar — 1] 2 4 5 6 16 | 45

1 Dictionary 1 Postings lists

Hans Philippi Boolean retrieval, posting lists & dictionaries 12 /38

Implementation of dictionary and postings lists

As always: optimality depends on read - update ratio.

Internal memory, static situation:
e hash table or tree like structure for dictionary

e arrays for postings lists: good cache behaviour !

Internal memory, dynamic situation:
e hash table or tree like structure for dictionary
e linked lists for postings lists

External memory:
e tree like structure or hash table for dictionary
e linked lists (block structure) for postings lists

General observation: hash table does not support range queries

'MSc thesis Matthijs Meulenbrug (Mininova)

Hans Philippi Boolean retrieval, posting lists & dictionaries 13/38

Tree like structures: B-tree and Trie (prefix tree)

1 romane

2 romanus

3 romulus []

4 rubens

5 ribar Tag)

6 rubicon
7 rubicundus o

e
NRNE NNEENAN

[22]20]] []a]]
E;NNEE NNNE NNEN

@E"
O
cRdaa T}
®

)

Hans Philippi Boolean retrieval, posting lists & dictionaries 14 /38

Indexing process

STOCHEISHIES 10 T2 =70 Eriends, Romans, countrymen,
be indexed ‘ ’ = oy ‘
.

Tokenizer
AeKESHeam ‘Friends HRomans | |Countrymen‘

Linguistic

modules

friend | |roman ntrym

Modified tokens | | ‘ o ‘ ‘cou try an‘

—
Inverted index l Ie—"
countryman’l—={ 13 H16

Hans Philippi Boolean retrieval, posting lists & dictionaries 15 /38

Boolean query processing

Query = term; AND terms

@ locate postings list p; for term;
@ locate postings list po for terms
© calculate the intersection of p; and py by list merging

termy —> || 13| 7 |11 |37 | 44 | 58 | 112
termy, =—> || 2| 4|11 |25 |44 | 54 | 55 | 58

Hans Philippi Boolean retrieval, posting lists & dictionaries

Boolean query processing: list merging

INPUT: postings lists p; and p»
OUTPUT: a sorted list representing the intersection of p; and p»
METHOD:
result = empty list;
while not (IsEmpty(p1) or IsEmpty(p2)) {
if (docID(p1) == docID(p))
then {
append(result, docID(p1));
p1 = next(p1); p2 = next(pz);
} else if (doclD(p1) < doclD(p2))
then p; = next(p1);
else pp = next(pz);

Hans Philippi Boolean retrieval, posting lists & dictionaries 17 /38

INTERMEZZO: Boolean query processing

Query = term; AND NOT terms,

@ locate postings list p; for term;

@ locate postings list py for term;
(s I

pr— |[1]3] 7 11374458112
P — || 2 | 4| 11| 25| 44 | 54 | 55 | 58

Hans Philippi Boolean retrieval, posting lists & dictionaries 18 /38

INTERMEZZO: Boolean query optimization

Query = termy AND termy AND ... AND term,

@ How do we process this query?

Hans Philippi Boolean retrieval, posting lists & dictionaries 19/38

INTERMEZZO: Boolean query optimization

Query = term; AND termy AND ... AND term,

@ How many possibilities do we have?
@ Analogy with join order problem in database query processing

@ Heuristic?

Hans Philippi Boolean retrieval, posting lists & dictionaries 20/38

Boolean query processing: skip pointers

Skip pointers may speed up merge process

8 a1 Hasl{eal {138
1 8P11 1721 431

Hans Philippi Boolean retrieval, posting lists & dictionaries 21/38

Boolean query processing: skip pointers

8Ha1 Hasl{eal {73
1] 8L 11 1721 H31]

... but what are suitable skip spans?

@ many skip pointers: ...

@ less skip pointers: ...

Hans Philippi Boolean retrieval, posting lists & dictionaries 22/38

Boolean query processing: skip pointers

BHa1 Haslfeal {13
a3 Hs i 17 o 1

... but what are suitable skip spans?

@ many skip pointers: more comparisons, more frequent skips,
higher memory cost

@ less skip pointers: less comparisons, less frequent skips, longer
jumps, lower memory cost

@ rule of thumb: /n skip pointers for n = length of posting list

Hans Philippi Boolean retrieval, posting lists & dictionaries 23/38

INTERMEZZO: Boolean query optimization

Query = termy AND termy AND terms

Options:
@ merge p1 with pp, and merge the result with p3
@ two alternatives by permutation

@ do a three-way-merge of p;, p2 and p3

Question:
which approach takes most advantage of skip pointers?

Hans Philippi Boolean retrieval, posting lists & dictionaries

Phrase queries

Make a distinction between:
Q1 = "fight” AND "club”
Q2 = "fight club”

How do we support juxtaposition of terms?

Hans Philippi Boolean retrieval, posting lists & dictionaries 25/38

Phrase queries

How do we support juxtaposition of terms?
Solution 1: biword index

Disadvantages:
@ index size quadratic

@ how do we support juxtaposition of three or more terms?

Hans Philippi Boolean retrieval, posting lists & dictionaries

Phrase queries

How do we support juxtaposition of terms?
Solution 1: biword index

Disadvantages:
@ index size quadratic
@ how do we support juxtaposition of three or more terms?

Solution 2: positional index

Hans Philippi Boolean retrieval, posting lists & dictionaries

Positional index

For each term, we also register the position(s) of the term in each
document, where a document is regarded to be an array of tokens.

So, for each term myterm, we have the following entry in the
index:

< myterm: nr of docs containing myterm;,
docl: positionl, position2, ... ;
doc2: positionl, position2, ... ;

Hans Philippi Boolean retrieval, posting lists & dictionaries

Positional index

Example:

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367;

.>

Which of the docs could contain:
"to be or not to be”

Hans Philippi Boolean retrieval, posting lists & dictionaries 29 /38

Wild-card queries

Query: w*rd

matches word, weird and wild-card

Wild-card queries may put a heavy load on query processing

Hans Philippi Boolean retrieval, posting lists & dictionaries 30/38

Wild-card query processing using B-tree

Case 1: prefix known
Query = pre*

@ find all terms between pre and prf

@ B-tree supports range queries very well

Hans Philippi Boolean retrieval, posting lists & dictionaries 31/38

Wild-card query processing using B-tree

Case 2: suffix known
Query = *post

o7

Hans Philippi Boolean retrieval, posting lists & dictionaries 32/38

Wild-card query processing using B-tree

Case 2: suffix known
Query = *post

@ maintain a second B-tree with inverted terms

@ find all terms between tsop and tsoq

Hans Philippi Boolean retrieval, posting lists & dictionaries 33/38

Wild-card query processing

Case 3: general form
Query = pre*post

o Option 1: intersection of results from pre* and *post

@ Option 2: permuterm index

Hans Philippi Boolean retrieval, posting lists & dictionaries 34 /38

Wild-card query processing: permuterm index

For a term hello, add $ to the end of the term, and create entries
for each rotation of the term. All these entries are connected to
the posting list of the term hello.

e hello$

e cllo$h

) /Io$he

o lo$hel

e o%hell
For a query = he*o,
we add $ and rotate the term until ...

Hans Philippi Boolean retrieval, posting lists & dictionaries 35/38

Wild-card query processing: permuterm index

For a term hello, add $ to the end of the term, and create entries
for each rotation of the term. All these entries are connected to
the posting list of the term hello.

[hello$

e ello$h

e llo$he

o lo$hel

e o%hell
For a query = he*o, we add $ and rotate the term until the *is at
the end of the query string: query = o$he*.
Finally, notice that o$he* has a prefix match with o$hell.

Hans Philippi Boolean retrieval, posting lists & dictionaries 36/38

Wild-card query processing: k-grams

@ Note that k-grams can also be used to deal with the wild-card
problem

e Example: entries in search tree (k=3) pointing to viraal
o vir

e ira

e raa

e aal

@ Determination of k requires tuning

o We will deal extensively with k-grams within the context of
biological sequence alignment

Hans Philippi Boolean retrieval, posting lists & dictionaries 37/38

References

Manning:
@ chapter 1

@ chapter 2.3, 2.4; the chapters on language issues are
recommended as background reading

@ chapter 3 - 3.2

means: up to and including

Hans Philippi Boolean retrieval, posting lists & dictionaries 38/38

