
Data-analysis and Retrieval
Boolean retrieval, posting lists and dictionaries

Hans Philippi
(based on the slides from the Stanford course on IR)

April 26, 2023

Hans Philippi Boolean retrieval, posting lists & dictionaries 1 / 38

Basics of text searching

1 Collection: fixed set of documents

2 Goal: retrieve documents that are relevant to the user’s
information need

3 Practice: user’s information need is expressed by one or more
search terms

4 Example: you want to book a room in a Hilton hotel for a trip
to Paris

Hans Philippi Boolean retrieval, posting lists & dictionaries 2 / 38

Information need?

Hans Philippi Boolean retrieval, posting lists & dictionaries 3 / 38

Basics

Quality measures for retrieval

1 Precision: fraction of retrieved docs that are relevant to user’s
information need (also called selectivity)

2 Recall: fraction of relevant docs in collection that are
retrieved (also called sensitivity)

Hans Philippi Boolean retrieval, posting lists & dictionaries 4 / 38

Examples of collections

WestLaw (http://en.wikipedia.org/wiki/Westlaw)

1 Largest commercial legal search service (started 1975; ranking
added 1992)

2 Tens of terabytes of data; 700,000 users

3 Majority of users still use boolean queries

4 Example query:
• What is the statute of limitations in cases involving the
federal tort claims act?
• LIMIT! /3 STATUTE /S FEDERAL /2 TORT /3 CLAIM

(! = trailing wildcard, /3 = within 3 words, /S = in same

sentence)

Hans Philippi Boolean retrieval, posting lists & dictionaries 5 / 38

Collections for research purposes

RCV1, RCV2 (Reuters Corpus Volume 1, 2)

1 In 2000 Reuters released a corpus of Reuters News stories for
use in research and development of natural language
processing, information retrieval or machine learning

2 RCV1 covers 800,000 news articles in English (2.5 GB)

3 RCV2 covers 487,000 articles in thirteen languages

4 More recently: Reuters-21578 for text categorization

Hans Philippi Boolean retrieval, posting lists & dictionaries 6 / 38

Boolean retrieval

1 Basic model for IR

2 Matching of keywords, using logical connectives:
AND, OR, NOT and brackets

3 Still used, e.g. in library catalogs

Hans Philippi Boolean retrieval, posting lists & dictionaries 7 / 38

Boolean retrieval

1 Which plays of Shakespeare contain the words Brutus AND
Caesar but NOT Calpurnia?

2 One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out plays containing Calpurnia . . .

3 . . . but smarter approaches may be ahead

Hans Philippi Boolean retrieval, posting lists & dictionaries 8 / 38

Boolean retrieval: term-document incidence matrix

Hans Philippi Boolean retrieval, posting lists & dictionaries 9 / 38

Boolean retrieval: term-document incidence matrix

1 We have a 0/1 vector for each term

2 To answer query: apply a bitwise AND to the vectors for
Brutus, Caesar and Calpurnia (complemented)

3 110100 AND 110111 AND 101111 = 100100

Hans Philippi Boolean retrieval, posting lists & dictionaries 10 / 38

Indexing: term-document incidence matrix?

Can we use the term-document incidence matrix for indexing
purposes?

Some typical parameters:

1 number of documents: thousands (libraries) to billions (www)

2 number of terms per document: possibly several thousands

3 number of terms in a language (English, Dutch): tens of
thousands (note that the web is multilingual)

4 on average 6 bytes/word

For the web, we have the following orders of magnitude:

1 1010 for the number of web sites

2 roughly 1011 to 1012 for the number of web pages

Hans Philippi Boolean retrieval, posting lists & dictionaries 11 / 38

Indexing: dictionary and postings lists

sparse matrix approach

documents are identified by a unique number: the docID

terms are organized in a dictionary, supporting quick searching

each term has a postings list: an ordered list of docs
containing this term

Calpurnia =⇒
Brutus =⇒
Caesar =⇒

2 31 45 101 112 154 181 ...

1 2 4 11 31 45 173 ...

1 2 4 5 6 16 45 ...

↑ Dictionary ↑ Postings lists

Hans Philippi Boolean retrieval, posting lists & dictionaries 12 / 38

Implementation of dictionary and postings lists

As always: optimality depends on read - update ratio.

Internal memory, static situation:
• hash table or tree like structure for dictionary
• arrays for postings lists: good cache behaviour 1

Internal memory, dynamic situation:
• hash table or tree like structure for dictionary
• linked lists for postings lists

External memory:
• tree like structure or hash table for dictionary
• linked lists (block structure) for postings lists

General observation: hash table does not support range queries

1MSc thesis Matthijs Meulenbrug (Mininova)
Hans Philippi Boolean retrieval, posting lists & dictionaries 13 / 38

Tree like structures: B-tree and Trie (prefix tree)

Hans Philippi Boolean retrieval, posting lists & dictionaries 14 / 38

Indexing process

Hans Philippi Boolean retrieval, posting lists & dictionaries 15 / 38

Boolean query processing

Query = term1 AND term2

1 locate postings list p1 for term1

2 locate postings list p2 for term2

3 calculate the intersection of p1 and p2 by list merging

term1 =⇒
term2 =⇒

1 3 7 11 37 44 58 112 ...

2 4 11 25 44 54 55 58 ...

Hans Philippi Boolean retrieval, posting lists & dictionaries 16 / 38

Boolean query processing: list merging

INPUT: postings lists p1 and p2
OUTPUT: a sorted list representing the intersection of p1 and p2
METHOD:

result = empty list;
while not (IsEmpty(p1) or IsEmpty(p2)) {

if (docID(p1) == docID(p2))
then {

append(result, docID(p1));
p1 = next(p1); p2 = next(p2);

} else if (docID(p1) < docID(p2))
then p1 = next(p1);
else p2 = next(p2);

}

Hans Philippi Boolean retrieval, posting lists & dictionaries 17 / 38

INTERMEZZO: Boolean query processing

Query = term1 AND NOT term2

1 locate postings list p1 for term1

2 locate postings list p2 for term2

3 ?

p1 =⇒
p2 =⇒

1 3 7 11 37 44 58 112 ...

2 4 11 25 44 54 55 58 ...

Hans Philippi Boolean retrieval, posting lists & dictionaries 18 / 38

INTERMEZZO: Boolean query optimization

Query = term1 AND term2 AND ... AND termn

How do we process this query?

Hans Philippi Boolean retrieval, posting lists & dictionaries 19 / 38

INTERMEZZO: Boolean query optimization

Query = term1 AND term2 AND ... AND termn

How many possibilities do we have?

Analogy with join order problem in database query processing

Heuristic?

Hans Philippi Boolean retrieval, posting lists & dictionaries 20 / 38

Boolean query processing: skip pointers

Skip pointers may speed up merge process

Hans Philippi Boolean retrieval, posting lists & dictionaries 21 / 38

Boolean query processing: skip pointers

... but what are suitable skip spans?

many skip pointers: . . .

less skip pointers: . . .

Hans Philippi Boolean retrieval, posting lists & dictionaries 22 / 38

Boolean query processing: skip pointers

... but what are suitable skip spans?

many skip pointers: more comparisons, more frequent skips,
higher memory cost

less skip pointers: less comparisons, less frequent skips, longer
jumps, lower memory cost

rule of thumb:
√
n skip pointers for n = length of posting list

Hans Philippi Boolean retrieval, posting lists & dictionaries 23 / 38

INTERMEZZO: Boolean query optimization

Query = term1 AND term2 AND term3

Options:

merge p1 with p2, and merge the result with p3

two alternatives by permutation

do a three-way-merge of p1, p2 and p3

Question:
which approach takes most advantage of skip pointers?

Hans Philippi Boolean retrieval, posting lists & dictionaries 24 / 38

Phrase queries

Make a distinction between:

Q1 = ”fight” AND ”club”

Q2 = ”fight club”

How do we support juxtaposition of terms?

Hans Philippi Boolean retrieval, posting lists & dictionaries 25 / 38

Phrase queries

How do we support juxtaposition of terms?

Solution 1: biword index

Disadvantages:

index size quadratic

how do we support juxtaposition of three or more terms?

Hans Philippi Boolean retrieval, posting lists & dictionaries 26 / 38

Phrase queries

How do we support juxtaposition of terms?

Solution 1: biword index

Disadvantages:

index size quadratic

how do we support juxtaposition of three or more terms?

Solution 2: positional index

Hans Philippi Boolean retrieval, posting lists & dictionaries 27 / 38

Positional index

For each term, we also register the position(s) of the term in each
document, where a document is regarded to be an array of tokens.

So, for each term myterm, we have the following entry in the
index:

< myterm: nr of docs containing myterm;
doc1: position1, position2, ... ;
doc2: position1, position2, ... ;
...

>

Hans Philippi Boolean retrieval, posting lists & dictionaries 28 / 38

Positional index

Example:

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367;
... >

Which of the docs could contain:
”to be or not to be”

Hans Philippi Boolean retrieval, posting lists & dictionaries 29 / 38

Wild-card queries

Query: w*rd

matches word, weird and wild-card

Wild-card queries may put a heavy load on query processing

Hans Philippi Boolean retrieval, posting lists & dictionaries 30 / 38

Wild-card query processing using B-tree

Case 1: prefix known

Query = pre*

find all terms between pre and prf

B-tree supports range queries very well

Hans Philippi Boolean retrieval, posting lists & dictionaries 31 / 38

Wild-card query processing using B-tree

Case 2: suffix known

Query = *post

?

Hans Philippi Boolean retrieval, posting lists & dictionaries 32 / 38

Wild-card query processing using B-tree

Case 2: suffix known

Query = *post

maintain a second B-tree with inverted terms

find all terms between tsop and tsoq

Hans Philippi Boolean retrieval, posting lists & dictionaries 33 / 38

Wild-card query processing

Case 3: general form

Query = pre*post

Option 1: intersection of results from pre* and *post

Option 2: permuterm index

Hans Philippi Boolean retrieval, posting lists & dictionaries 34 / 38

Wild-card query processing: permuterm index

For a term hello, add $ to the end of the term, and create entries
for each rotation of the term. All these entries are connected to
the posting list of the term hello.
• hello$
• ello$h
• llo$he
• lo$hel
• o$hell

For a query = he*o,
we add $ and rotate the term until ...

Hans Philippi Boolean retrieval, posting lists & dictionaries 35 / 38

Wild-card query processing: permuterm index

For a term hello, add $ to the end of the term, and create entries
for each rotation of the term. All these entries are connected to
the posting list of the term hello.
• hello$
• ello$h
• llo$he
• lo$hel
• o$hell

For a query = he*o, we add $ and rotate the term until the * is at
the end of the query string: query = o$he*.
Finally, notice that o$he* has a prefix match with o$hell.

Hans Philippi Boolean retrieval, posting lists & dictionaries 36 / 38

Wild-card query processing: k-grams

Note that k-grams can also be used to deal with the wild-card
problem

Example: entries in search tree (k=3) pointing to viraal
• vir
• ira
• raa
• aal

Determination of k requires tuning

We will deal extensively with k-grams within the context of
biological sequence alignment

Hans Philippi Boolean retrieval, posting lists & dictionaries 37 / 38

References

Manning:

chapter 1

chapter 2.3, 2.4; the chapters on language issues are
recommended as background reading

chapter 3 - 3.2

”-” means: up to and including

Hans Philippi Boolean retrieval, posting lists & dictionaries 38 / 38

