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Index construction: two approaches

Algorithms dealing with limited main memory, based on
external sorting. Output of sorting phase enables index
building.

Index building based on MapReduce: generic architecture for
and approach to large scale parallellism
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Hardware characteristics

Current characteristics for commodity hardware:

memory disk SSD

size 16 GB 4 - 8 TB 0,5 - 1 TB
access time 100 nsec 5 - 10 msec 0.1 msec

Average characteristics of disk access can be enhanced by
clustering

Disk IO is block (page) based; typical block size is 8 - 256 kB

Hans Philippi Index construction & MapReduce 3 / 27



Classical approach: external sorting

Input : document collection <docid, text>

< 2013, ”de dag die je wist dat zou komen is eindelijk hier”>
< 1971, ”jaren komen en jaren gaan”>
< 1994, ”we komen en we gaan”>

Output from sorting phase is basis for building index and postings lists:

<”dag”, 2013 >
<”de”, 2013 >
. . .
<”en”, 1971 >
<”en”, 1994 >
. . .
<”komen”, 1971 >
<”komen”, 1994 >
<”komen”, 2013 >

. . .
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MapReduce

Framework for massively parallel computing

Roots in Google environment (indexing, PageRank)

Based on commodity hardware

Two sets of machines involved in parallel processing: Map
workers and Reduce workers

Robust

Generic, based on Map and Reduce (Fold) from functional
programming

Several implementations, Hadoop is the most well known
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MapReduce: the Map

Basic data structure is key-value pair < k , v >

Input is split into disjoint chunks, containing collections of key
value pairs

Each Map worker works autonomous from other map workers
(“shared nothing”)

Each Map worker scans it’s own input chunk once

Each Map worker does one uniform calculation on each
key-value pair

The output of each Map worker is a set of key-value pairs:
zero, one or more

The output results of all Map workers are collected for further
processing in the Reduce phase
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MapReduce: the Reduce

The output results of all Map workers are grouped on the key
values

After regrouping, the resulting key-value sets are distributed
over the reduce workers

All related key value pairs will be processed by one Reduce
worker

Each Reduce worker works autonomous from other Reduce
workers (shared nothing)

The output results of all Reduce workers together are the
result of the calculation
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MapReduce: a formal view

Two step approach

Map phase: define a function Map taking < k, v > as
argument, finally emitting zero, one or more key-value pairs
[< k1, v1 >,< k2, v2 >, . . . , < km, vm >]

Reduce phase: define a function Reduce taking
< k ′, [v ′1, v

′
2, . . . , v

′
n] > as argument, finally emitting zero, one

or more key-value pairs
[< k ′1, v

′′
1 >,< k ′2, v

′′
2 >, . . . , < k ′n′ , v

′′
n′ >]

Take notice of the accents and subscripts: they are essential
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MapReduce example

Example: word count

Input: a collection of documents
Output: the words in the documents with their frequency

Map < docid , text >:
for each word w in text

emit(< w , 1 >);

Reduce < w , vlist >:
int sum = 0;
for each v in vlist

sum + +;
emit(< w , sum >);
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MapReduce example

Input to Map-workers:

< 2013, ”de dag die je wist dat zou komen is eindelijk hier”>
< 1971, ”jaren komen en jaren gaan”>
< 1994, ”we komen en we gaan”>

Output from Map workers:

<”de”, 1 >
<”dag”, 1 >
<”die”, 1 >
. . .
<”gaan”, 1 >
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MapReduce example

... then comes the invisible step ...

... which could be characterized as a ”GROUP BY key” ...
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MapReduce example

Input to Reduce-workers:

<”de”, [1] >
. . .
<”komen”, [1, 1, 1] >
. . .
<”gaan”, [1, 1] >
. . .

Output:

<”de”, 1 >
. . .
<”komen”, 3 >
. . .
<”gaan”, 2 >

. . .
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MapReduce example

Observations:

The input pairs will be processed by different Map-workers

Behind the scenes (invisible step), all emitted pairs with the
same key are grouped together (after the Map phase and
before the Reduce phase)

The grouping phase includes concatenation of all the values
corresponding to the same key

In our example: in the grouping phase: three times
<”komen”, 1 > becomes <”komen”, [1, 1, 1] >
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MapReduce computing
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MapReduce computing
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INTERMEZZO MapReduce example

Do you have any suggestions for optimization of the MapReduce
program from the example on slide 9?
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MapReduce architecture (original paper)

We are dealing with terabyte scale processing problems

Standard shared-nothing architecture
• cluster of commodity Linux nodes
• Gigabit ethernet interconnection
• cheaper than supercomputer

Masking hardware failures

Input and final output on distributed file system

Hans Philippi Index construction & MapReduce 17 / 27



MapReduce architecture (original paper)
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MapReduce architecture: DFS

Distributed file system

gigabyte to terabyte scale

data warehouse behaviour
• read intensive
• rarely updated
• possibly appends

file is split into 16-64 MB contiguous chunks

2-3 times replicated in different racks
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MapReduce computing
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MapReduce computing: coordination

Master process

determines number of Map tasks (M) and number of Reduce
tasks (R)
• M and R are chosen much larger than the number of

nodes

monitors status workers: idle, busy, down

monitors status tasks: idle, in-progress, completed

After finishing, a Map task delivers R intermediate result files on
the local disks of the Map workers and sends the sizes and
locations to the Master

Master forwards this info to the reduce workers
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MapReduce computing: failure handling

Master pings workers periodically to detect failures

If Map worker fails, completed tasks or tasks in-progress are
set to idle; tasks are rescheduled to other workers

If Reduce worker fails, its in-progress tasks are set to idle

If Master fails, job is aborted and client is notified
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MapReduce computing: partitioning

Each Map task deals with a contiguous segment of input file

The intermediate records with the same key should end up at
the same Reduce worker

System uses a default partition function: hash(key) mod R

It is possible to override the default partition function
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MapReduce computing: early combining

Word count could be optimized by doing some aggregation in
the Map phase

Instead of k repetitions of emit(< w , 1 >); do
emit(< w , k >);

Adapt the Reduce program (how?)

In general, this idea is applicable if the reduce function is
commutative and associative (e.g. sum, max)

Early combining often requires a setup of local datastructures
and a final emit

Our convention: for writing pseudo code, use functions
Init Map() and Finalize Map()
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MapReduce: caveats

In our examples, the input of Map sometimes ignores the
< key , value > structure, because the keys are irrelevant. For
instance, an input of value v is given, where, strictly spoken,
it should be < k , v >.

Often, the output of Reduce ignores the < k , v > structure.

However, for the communication between Map and Reduce,
the < k , v > structure is essential! The keys and values
cannot be complex datastructures.

Be aware dat Map and Reduce workers have no direct access
to each other’s local data!

Input: Map always works on one < k , v > tuple. Reduce
always works on one < k, [v1, v2, ..., vn] > tuple.

The only output method is emit.
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MapReduce computing: exercises

See web site and/or handouts
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MapReduce: references

http://infolab.stanford.edu/~ullman/mmds/ch2.pdf

up to and including 2.3

https://sites.google.com/site/mriap2008/lectures
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