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Top-k queries

An example top-k query:

SELECT * FROM UsedCars

WHERE brand = ’BMW’ OR brand = ’Mercedes’
ORDER BY 8*price + 2+*mileage

LIMIT 20

General characteristics:
We order resulting tuples according to some function f and are
interested in a limit set of tuples containing extreme values of f.
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Top-k queries

Another example: similarity matching in image databases.

Given a certain image gim:

SELECT im.id FROM Images im
WHERE date >= °01.01.2016°
ORDER BY DESC
0.5*ColorSim(qim, im) + 0.5*TextureSim(qim, im)
LIMIT 10
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Top-k query processing

A naive approach to top-k query processing:
@ Process the basic structure of the query (before the ORDER)
@ Do the sorting based on the function f

@ Scan the first k tuples from the resulting table

So in general, finding a top-10 might require processing 10,000 or
10° or 10° tuples.

Can we do better?
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Top-k query processing

A naive approach to top-k query processing:
@ Process the basic structure of the query (before the ORDER)
@ Do the sorting based on the function f
@ Scan the first k tuples from the resulting table

So in general, finding a top-10 might require processing 10,000 or
10 or 10° tuples.

Can we do better?

Yes, we can!

(But there are some conditions)
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Top-k query processing: monotonicity

@ We require that f is monotone
@ In our examples, we suppose f is monotonic non-increasing !

@ Intuition: if you increase the value one of the parameters of f
and keep the others constant, f will not decrease.

@ Definition: suppose f has n parameters.
For each i € [1..n] we require that for all xi,xp, ..., x, and y;:
Xi <Yi = F(X1, X2 ces Xiy ooy Xn) = F(X1, X2, eevy Yiy oovy Xn)

1Of course, with some adaptations, we could also apply the algorithms if f

is monotonic non-decreasing.
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Top-k algorithms

@ We will look at two algorithms by Fagin e.a.
@ We suppose that we access the data columns through lists

@ TA: Threshold Algorithm
sorted access and random access to each list

@ NRA: No Random Access algorithm
sorted access to each list, but no random access
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Top-k: lists representing function parameters

We represent the attributes which are arguments of f by separate
lists. Remember that we suppose f has to be maximized and is
monotonic non-decreasing. The values of lists A and B each have
a known minimum (in our case 0).

Example: the table below has sorted access to both A and B.

oid | A|B| C
001 | 4 |7
002 |2 |38
003 |3 |1
For TA and NRA, it is represented as:
oid | A oid | B
001 | 4 002 | 8
003 | 3 001 |7
002 | 2 003 |1
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Top-k: lists in a relational context

@ If we have an RDBMS with a classical, record oriented
architecture, we can realize sorted access by creating a B-tree
index on each column that acts as a list.

@ Caveat: note that you cannot manipulate the B-tree directly.
You are forced to simulate the manipulation of the B-tree
using SQL-queries.

o If we have a main-memory RDBMS with column stores, sorted
access can by obtained by efficient internal sorting techniques.

@ Random access based on oid can be realized either by an
index structure or by a (duplicate) list sorted on oid.
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TA: Threshold Algorithm

Basic approach: in each round of the algorithm, one new value
from each list is inspected, starting at the top. Suppose f = A+ B.

oid | A oid | B
001 | 4 002 | 8
003 | 3 001 | 7
002 | 2 003 |1

We keep track of the following variables:

Max-A: maximum value of A to be found in following rounds (4)
Max-B: maximum value of B to be found in following rounds (8)
Threshold T: maximum value of f to be found in next rounds (12)
Buffer: known [oid,f] tuples: [001, 11], [002, 10]

Partial top-k: still empty (why?)
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TA: Threshold Algorithm

Intermezzo 1: TA

(four rounds)
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TA: Threshold Algorithm

oID A QID B

4 100 6 100
1 90 5 90
6 80 1 70
5 70 3 50
2 40 4 30
3 30 2 20

ROUND 1 2

Max-A 100

Max_B 100

Treshold 200

Buffer [4:130]

[6:180]
Top-k
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TA: Threshold Algorithm

oID A oID B
4 100 6 100
1 90 5 90
6 80 1 70
5 70 3 50
2 40 4 30
3 30 2 20
ROUND 1 2 3 4
Max-A 100 90
Max_B 100 90
Treshold 200 180
Buffer [4:130] [4:130]
[6:180] *[6:180]
[1:160]
[5:160]
Top-k [6:180]
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NRA: No random access algorithm

Basic approach: in each round of the algorithm, one new value
from each list is inspected, starting at the top, but now we cannot
find the corresponding oid in the other list quickly.

oid | A oid | B
001 | 4 002 | 8
003 | 3 001 | 7
002 | 2 003 | 1

We keep track of the following variables:

Max-A: maximum value of A to be found in next rounds (4)
Max-B: maximum value of B to be found in next rounds (8)
Threshold T: maximum value of f to be found in next rounds (12)
Buffer. known [oid,f] tuples: [001, 4 - 12], [002, 8 - 12]

Partial top-k: still empty (why?)
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NRA: No random access algorithm

Intermezzo 2: NRA

(four rounds)
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NRA: No Random Access Algorithm

oID A oID B

4 90 6 100
1 90 5 40
6 40 Al 40
5 30 4 30
2 20 3 20
3 10 2 10

ROUND 1 2

Max-A 90

Max_B 100

Treshold 190

Buffer [4: 90 - 190]

(changing!) [6: 100 - 190]

Top-k
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NRA: No Random Access Algorithm

oID A OID B
4 90 6 100
1 90 5 40
6 40 1 40
5 30 4 30
2 20 3 20
3 10 2 10
ROUND 1 2 4
Max-A 90 90
Max_B 100 40
Treshold 190 130
Buffer [4:90 - 190] [4:90-130]
(changing!) [6:100- 190] [6:100- 190]
[1:90-130]
[5:40-130]
Top-k
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Top-k: more advanced approaches

We have seen top-k query processing on single tables. More
complications rise when the query involves a join of several tables.

The reference below describes an approach where top-k processing
is fully integrated with classical relational query optimization.

https:
//cs.uwaterloo.ca/~ilyas/papers/ilyassigmod05.pdf
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Top-k: epilog

@ In 2013, Nick Schuiling and Maarten van Duren implemented
these algorithms on top of MonetDB, a main-memory column
store RDBMS developed at the CWI. They realized huge
performance gains on TPC/H benchmarks.

@ You are invited to apply smart top-k algorithms in Lab 1.
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