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A short history

1995-2000: known techniques from IR applied to WWW

Classical approach: focus on relevance of document to query

Problem: many many answers

Average user will look at 10-20 answers at most

Growing insight: need to distinguish ”important” sites
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A short history

1998 John Kleinberg (IBM Almaden) tries to use the
hyperlink structure of the web

At the same time, Sergey Brin en Larry Page are developing
the PageRank algorithm at Stanford University

Question: can we use the link structure of the web to identify
important sites
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Principles of ”importance” in PageRank

Using link structure to define importance of a web site:

When many sites refer to you, you are important

When important sites refer to you, you are important 1

When a site referring to you has many outgoing links, this
decreases the weight of the reference

1This feels like a circular definition, but we can deal with it!
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PageRank: model & math

The web is a directed graph

The set of nodes corresponds to web sites: Bi

The set of links corresponds to the hyperlinks
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PageRank: model & math

Each site Bi has a value Pi , the pagerank
The web induces a set of equations for the pageranks Pi

P1 = P2/3 + P3/1 + P4/2 + P5/3
P2 = . . .
P3 = . . .
P4 = . . .
P5 = . . .

Hans Philippi PageRank 7 / 32



PageRank: model & math

Each site Bi has a value Pi , the pagerank
The web induces a set of equations for the pageranks Pi

P1 = P2/3 + P3/1 + P4/2 + P5/3
P2 = P5/3
P3 = P2/3 + P4/2
P4 = P5/3
P5 = P1/1 + P2/3
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PageRank: model & math

We can reformulate the set of equations in terms of vectors
and matrices

HP = P, with
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Intermezzo

Calculate the sum of each column. What do you notice?
Explain.

Does the same hold for each row? Explain.
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PageRank: model & math

You can solve this set of equations using standard techniques
from linear algebra

But we have this huge dimension: n = number of sites, about
1010

The complexity of the solving algorithm is O(n3)

The algorithm has no approximation behaviour: it is all or
nothing
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PageRank: model & math

Alternative calculation: fixpoint iteration

Start with a vector P(0) = (1/n, 1/n, ..., 1/n)T

Calculate P(k) = HP(k−1), for a certain k

Hope (for this moment) that it converges towards a solution

Let us have a look at our toy example:

P(2) = (0.3111, 0.0889, 0.0556, 0.0889, 0.4556)T

P(30) = (0.3137, 0.1176, 0.0980, 0.1176, 0.3529)T

It turns out to be the case that P(30) approaches the solution
up to four decimals
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PageRank: model & math

Can we understand and guarantee the existence of a solution?

Can we understand and guarantee the convergence of the
fixpoint iteration toward the solution?

Fortunately, we know some things from classical linear algebra

The calculation is an eigenvalue problem:

HP = λP

There has been done a lot of research on eigenvalue problems
in the previous century

We will return to these questions soon
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PageRank: some problems

Can we guarantee the convergence of the fixpoint iteration?
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PageRank: some problems

Can we guarantee the convergence of the fixpoint iteration?

H =

(
0 1
1 0

)

P(0) =

(
p1
p2

)
; P(1) =

(
...
...

)
; P(2) =

(
...
...

)
;
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PageRank: some problems

Can we guarantee the convergence of the fixpoint iteration?

H =

(
0 1
1 0

)

P(0) =

(
p1
p2

)
; P(1) =

(
p2
p1

)
; P(2) =

(
p1
p2

)
; P(3) =

(
p2
p1

)
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PageRank: some problems

Can we guarantee the existence of a useful solution?

H =

 0 1
2 0

1
2 0 0
1
2

1
2 0


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Some problems

Can we guarantee the existence of a useful solution?

H =

 0 1
2 0

1
2 0 0
1
2

1
2 0


The only solution is P = (0, 0, 0)T
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Toward convergence: teleportation

B3 has no outgoing edges; it is called a dangling node

We will adapt our model with two goals in mind

Goal 1: we need a mathematical trick to guarantee
convergence to a useful solution

Goal 2: the trick should make sense when modeling surfing
behaviour

The edges of the web graph correspond to clicking on links ...

... but sometimes, we just type an address or use a bookmark

We model this phenomenon by teleportation
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Toward convergence: teleportation

If our matrix H contains an empty column, we fill this column
uniformly with values 1/n

In general:

S = H +
1

n
eaT

with e = (1, 1, 1, ..., 1)T and aj = 1
for each empty column j in H, otherwise 0
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Toward convergence: teleportation

We have used teleportation to solve the dangling node
problem ...

... but it turns out that teleportation is the key to
convergence in general!

We will extend our model with a general notion of
teleportation
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Toward convergence: teleportation

When someone is surfing, she will click on a link with a
probability α, ...

... or type an new URL (teleport) with a probability 1− α
In our model, teleportation is a jump towards any known site,
with uniform probability, represented by the teleportation
matrix T

T =
1

n
eeT =

1

n


1 1 ... 1
1 1 ... 1
... ... ... ...
1 1 ... 1


1Please be aware of the dual role of the letter T

Hans Philippi PageRank 22 / 32



The Ultimate Equation

G = αS + (1− α)T

We model clicking and jumping

When α = 1, we cannot guarantee convergence

When α = 0, we get results that completely ignore the
structure of the web: all pages are equal

In practice α is chosen close to 1 (0.85 is often suggested)

However the closer to 1, the slower the convergence
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Background: about convergence

The linear algebra behind PageRank was already known since more
than a hundred years ago. It has been applied in the context of
random walks, or, more specific, Markov chains.

We have an array of stochastic variables Xj , j = 0, 1, 2, . . .
representing a series of states

Each Bi corresponds to a possible state

The link matrix H corresponds to probabilities of state
transitions Bi → Bj
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Example Markov chain

A game player can have three possible states: playing, eating,
sleeping. The first column describes the transition probabilities for
one step in time from status = playing. Keep playing: 0.92. From
playing to eating: 0.05. From playing to sleeping: 0.03. Second
column: from eating to playing: 0.7 etc.

H =

 0.92 0.7 0.35
0.05 0.1 0.05
0.03 0.2 0.6



Note that each column sums up to 1.
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Analogy between PageRank and Markov chains

Starting with P(0) =


1/n
1/n
...

1/n


a repeated calculation P(k) = HP(k−1) gives us a vector P(k)

where each P
(k)
i represents the propability of being in state Bi

after a random walk of k steps, starting anywhere.

Under certain conditions, P(k) converges to P∗, where each
P∗
i approximates the probability of being in state Bi after a

long random walk, starting anywhere.

Analogy with PageRank: probability of status Bi corresponds
to importance site Bi .
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Background: about convergence

Now we will show how the theory behind random walks can be
used to prove the convergence of the PageRank fixpoint algorithm.

Definition: a probability vector is a vector u =


u1
u2
...
un

 such that

each ui ≥ 0 and
∑n

i=1 ui = 1

Definition: a probability matrix is a matrix where each column is a
probability vector.
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Background: about convergence

Definition: a probability matrix A is a regular when there exists a k
such that Ak has only positive entries.

Check the following claims for the PageRank matrix G :

G is a probability matrix

G is a regular matrix (for k =?)
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Background: about convergence

Theorem (Perron-Frobenius):
If A is regular probability matrix, then λ = 1 is an eigenvalue (the
principal eigenvalue). For all other eigenvalues, |λ| < 1 holds.

So we have eigenvalues λ1, λ2, λ3, . . . with

λ1 = 1, |λ2| < |λ1|, |λ3| < |λ2|, . . .

Corollary:
Because λ = 1 is an eigenvalue, we have a solution for AP = P
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Background: about convergence

Theorem:
For regular probability matrices, |λ2| determines the speed of
convergence.

Theorem:

For the PageRank matrix G :

|λ2| ≈ α
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Background: about convergence

Corollary: for the PageRank fixpount calculation, we have

||P − P (k)|| ≤ αk ||P − P (0)||

Note that for α = 0.85, α50 ≈ 0.0003.
This guarantees a precision of around three decimals for the
calculated PageRank vector.

Conclusion: it works.

Hans Philippi PageRank 31 / 32



References

Jan Brandts, Over de wiskunde die Google groot maakte

Langville & Meyer, Google’s PageRank and Beyond

Hans Philippi PageRank 32 / 32


