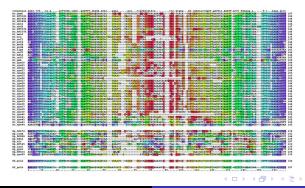
Data-analysis and Retrieval Case study k-grams: Biological sequence alignment

Hans Philippi

May 17, 2023

1/48


Text search

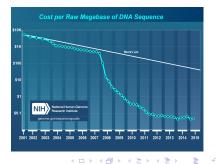
- So far, we considered exact text search ...
- ... supported by indexing techniques ...
- ... and possibly with wildcards
- But (almost) everyone knows this phenomenon:

Approximate string matching

- Application: automatic spelling correction
- Can be solved using dynamic programming techniques
- But in large scale applications, this may be computationally (too) heavy
- Heuristic indexing techniques based on k-grams
- Application: biological sequence alignment

Universiteit Utrecht - Hans Philippi

Biological sequence alignment

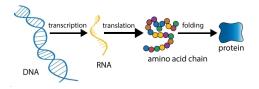

3/48

Queries in context:

- We have a number of patients with disease X. Can we find a sequence that is common in their genomes and that is different from corresponding sequences in genomes of non-patients?
- We have a new virus that has a lot properties in common with some known viruses. Can we find the differences in genetic properties? Can these differences be the result of a plausible sequence of spontaneous mutations, or is it likely to be engineered?

DNA sequencing: milestones

- 1953 Crick & Watson discover the molecular structure of DNA (double helix)
- 1977 Sanger pioneers with sequencing techniques
- 2000-2003 human genome sequenced
- 2008-2015 dramatic decrease of sequencing cost
- Currently: e.g. individual DNA analysis



- The Model: a DNA sequence is a string over the alphabet $\{A,C,G,T\}$
- Each of the letters represents a *base*, in the chemical sense
- $\bullet~\mathsf{A}=\mathsf{adenine},~\mathsf{G}=\mathsf{guanine},~\mathsf{C}=\mathsf{cytosine}~\mathsf{and}~\mathsf{T}=\mathsf{thymine}$
- T in DNA corresponds to U (uracil) in RNA
- A gene is a part of the genome that codes for a specific protein
- The length of a gene varies from a few hundreds to several thousands characters
- Example: ATGGGCGTGATCAAGCCCGACATGAAGATC...
- Background reading: Altman, Computer Applications in Molecular Biology¹

¹https://www.cs.uu.nl/docs/vakken/b3dar/altman.pdf ເອັນ ເອັນ ອັ ຈາດ

6/48

- Gene expression: a part of the genome is copied as messenger-RNA (transcription)
- The ribosome translates the mRNA code into a protein

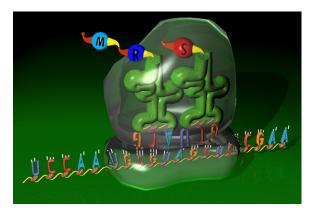
- A protein is represented by a sequence of amino acids. On earth, 20 different amino acids are known. Each of the amino acids is identified by a unique letter.
- A codon is a triplet of base characters. There are $4^3 = 64$ different codons
- Each codon determines an amino acid. Most amino acids are represented by more than codon
- A DNA/RNA string that encodes a protein is can be seen as a sequence of codons, for instance ATGACCAGGATCTTTAAGTGA ...
- ... can be read as ATG-ACC-AGG-ATC-TTT-AAG-TGA

Reference: https://en.wikipedia.org/wiki/Genetic_code

- A DNA/RNA string that encodes a protein is can be seen as a sequence of codons, for instance ATG-ACC-AGG-ATC-TTT-AAG-TGA
- ATG is start codon; TGA is stop codon
- translated to amino acids: methionine-threonine-arginine-...
- encoded to string representing amino acids: MTR...

Reference: https://en.wikipedia.org/wiki/DNA_codon_table

Genetics: the codon table


		Second letter								
		U	с	А	G					
'First letter	υ	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop		U C A G				
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG GIn	CGU CGC CGA CGG	U C A G	and the second se			
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU }Ser AGC }Arg AGA }Arg	U C A G	This was			
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Glu	GGU GGC GGA GGG	U C A G				

Third letter

Universiteit Utrecht - Hans Philippi Biol

ヨー つへ(

• The ribosome translates the mRNA triplet code into a protein

3 🕨 🖌 3

- SWISSPROT, GENBANK
- Contain both protein sequences and base sequences
- Generic query: *Find protein sequences similar to* MKYMTVTDLNNAGATV...

SWISSPROT example entries (FASTA format):

>gi|1171675|sp|P42268|NDD_BPR70 NUCLEAR DISRUPTION PROTEIN MKYMTVTDLNNAGATVIGTIKGGEWFLGTPHKDILSKPGFYFLVSEFDGSCV SARFYVGNQRSKQGFSAVLSHIRQRRSQLARTIANNNMAYTVFYLPASKMKP LTTGFGKGQLALAFTRNHHSEYQTLEEMNRMLADNFKFVLQAY >gi|123527|sp|P05228|HRP2_PLAFA HISTIDINE-RICH PROTEIN PRECURSOR (CLONE PFHRP-III) MVSFSKNKVLSAAVFASVLLLDNNNSEFNNNLFSKNAKGLNSNKRLLHESOA HAGDAHHAHHVADAHHAHHVADAHHAHHAANAHHAANAHHAANAHHAANAHHAANAHH A A N A HHA A N A ΗΗΔΑΔΔΝΗGEHENI HDNNSHTI ΗΗΔΚΔΝΔCEDDSHHDDΔΗΗDCΔΗΗDDΔΗΗD GAHHDDAHHDGAHHDGAHHDGAHHNATTHHI.HMKYMTVTDI.NNAGATV

э

Protein based sequence similarity

- Two DNA fragments are *homologous* if they show similarities based on common descent
- Below left, we see two homologous fragments. Not only do we have eight matching letters, also the S-N, Q-K and G-A pairings are likely (+) due to electrochemical properties of the amino acids
- We are looking for a formal notion of *sequence similarity* that comprises *letter distance* and *gapping*

seq1:	GSAQVKGHGKKVA	seq3:	HVDDMPNAL
mtch:	G+ +VK+HGKKV	mtch:	++ +L
seq2:	GNPKVKAHGKKVL	seq4:	QLQVTGVVVTDATL

Scoring

- There exists a classic solution for approximate string matching based on dynamic programming and edit distance
- We will refine this approach according to the specific properties of this domain, especially the letter distance
- Analysis of collections of protein strings provides us with probabilities of letters, when picking them randomly
- Analysis of collections of protein strings that represent known homologies provides us with probabilities of letter pairings

Reference: http://en.wikipedia.org/wiki/Edit_distance

- Each string x consists of a list of symbols x_i
- Symbol a has probability q_a , based on relative frequency
- A pair of symbols *a*, *b* has combined probability *p*_{ab} under the Match assumption, expressing the probability to be seen together in case of homology

• According to the *Random Model R*, the probability to observe *x* and *y* is

$$P(x,y|R) = \prod_i q_{x_i} \prod_i q_{y_i}$$

• According to the *Match Model M*, the probability to observe x and y is related to the probability of the pairings

$$P(x, y|M) = \prod_{i} p_{x_i y_i}$$

• The odds-ratio

$$\frac{P(x, y|M)}{P(x, y|R)} = \prod_{i} \frac{p_{x_i y_i}}{q_{x_i} q_{y_i}}$$

is an indicator for homology

• For mathematical reasons, we prefer to do our calculations in log-space

Scoring model: log space

• The odds-ratio

$$\frac{P(x, y|M)}{P(x, y|R)} = \prod_{i} \frac{p_{x_i y_i}}{q_{x_i} q_{y_i}}$$

• The log-odds ratio for character pairs

$$s(a,b) = log(\frac{p_{ab}}{q_a q_b})$$

• The *log-odds ratio* for strings x and y

$$S(x,y) = \sum_{i} s(x_i, y_i)$$

19/48

Scoring model: Blocks Substitution Matrix (BLOSUM)

- BLOSUM matrices represent log-odds ratios
- Several variants, for instance:
 - BLOSUM80: used for strongly related proteins
 - BLOSUM62: midrange
 - BLOSUM45: distantly related proteins
- Below you see a part of the BLOSUM50 matrix
- D, E and K charged; V, I and L hydrophobe

	D	Е	Κ	V	Ι	L
D	8	2	-1	-4	-4	-4
Е	2	6	1	-4 -3 -3 5 4 1	-4	-3
Κ	-1	1	6	-3	-3	-3
V	-4	-3	-3	5	4	1
Ι	-4	-4	-3	4	5	2
L	-4	-3	-3	1	2	5

Reference: https://en.wikipedia.org/wiki/BLOSUM

20 / 48

seq1:	GSAQVKGHGKKVA	seq3:	HVDDMPNAL
mtch:	G+ +VK+HGKKV	mtch:	++ +L
seq2:	GNPKVKAHGKKVL	seq4:	QLQVTGVVVTDATL

• We give a penalty for gaps with length g

$$\gamma(d) = -gd$$

• Based on empirical tuning, d = 8 is often suggested

∃ ► < ∃ ►</p>

Using BLOSUM50 and $\gamma(d) = -gd, d = 8$, calculate the scores for the following alignments:

			HVDDMPNAL
	G+ +VK+HGKKV		
seq2:	GNPKVKAHGKKVL	seq4:	QLQVTGVVVTDATL

22 / 48

▶ ∢ ⊒ ▶

Using BLOSUM50 and $\gamma(d) = -gd, d = 8$, calculate the scores for the following alignments:

 seq1:
 GSAQVKGHGKKVA
 seq3:
 HV---D--DMPNAL

 mtch:
 G+ +VK+HGKKV
 mtch:
 ++
 +L

 seq2:
 GNPKVKAHGKKVL
 seq4:
 QLQVTGVVVTDATL

 8+1-1+2+5+6+0+10+8+6+6+5-2
 1+1-24-1-16-4-1-1-1+0+5
 =

 =
 54
 =
 -41

23 / 48

- Gapping enlarges the search space dramatically
- But, we can apply dynamic programming
- The optimal alignment between strings x = x₁...x_m and y = y₁...y_n can be expressed in the optimal alignments of subsequences of x and y

∃ ► < ∃ ►</p>

Alignment algorithms: Needleman-Wunsch

Suppose we know optimal alignments for

- $x_1 ... x_{m-1}$ and $y_1 ... y_{n-1}$
- $x_1 ... x_m$ and $y_1 ... y_{n-1}$
- $x_1 \dots x_{m-1}$ and $y_1 \dots y_n$
- The optimal alignment for $x_1 \dots x_m$ and $y_1 \dots y_n$ can be determined by choosing the best option from:
 - solution for $x_1 \dots x_{m-1}$ and $y_1 \dots y_{n-1}$; pair x_m with y_n
 - solution for x₁...x_{m-1} and y₁...y_n;
 pair x_m with gap
 - solution for $x_1 \dots x_m$ and $y_1 \dots y_{n-1}$; pair y_n with gap

25 / 48

E > < E >

- Now we can fill the dynamic programming matrix from upper left to bottom right
- The score *F* for entry *i*, *j* can be calculated as follows:

$$F(i,j) = max egin{cases} F(i-1,j) - d \ F(i,j-1) - d \ F(i-1,j-1) + s(x_i,y_j) \end{cases}$$

 Arrows indicate which of the three options was chosen for the calculation of F(i,j)

$$\gamma(d) = -gd, d = 8$$

Initialized matrix:

	-	Н	E	А	
-	0	← -8	<i>←</i> -16	← -24	
Ρ	↑ -8				
A	↑ -16				
W	↑ -24				

< 3 > <

$$\gamma(d) = -gd, d = 8$$

One step:

28 / 48

< E ► < E

э

$$\gamma(d) = -gd, d = 8$$

★ 문 ► ★ 문 ►

Two more steps:

$$\gamma(d) = -gd, d = 8$$

Six more steps:

30 / 48

Align HEAGAWGHEE with PAWHEAE default is \nwarrow

$$\gamma(d) = -gd, d = 8$$

문 🕨 🗶 문

	-	Н	E	А	G	А	W	G	Н	E	E
-	0	< -8	< -16	< -24	< -32	< -40	< -48	< -56	< -64	< -72	< -80
Ρ	↑ -8	-2	-9	-17	< -25	-33	< -42	< -49	< -57	-65	-73
А	↑ -16	↑ -10	-3	-4	< -12	-20	< -28	< -36	< -44	< -52	< -60
W								< -13			
Н	↑ -32	-14	-18	-13	-8	-9	↑ -13	-7	-3	< -11	< -19
Е	↑ -40	↑ -22	-8	< -16	↑ -16	-9	-12	↑ -15	-7	3	-5
								-12			
Е	↑ -56	↑ -38	↑ -24	↑ -11	-6	-12	-14	-15	-12	-9	1

- Alignment is finished when lower right field is reached
- This field contains the alignment score: +1
- Time complexity is O(mn)
- Backward arrows indicate the alignment path
- Corresponding alignment ?

Needleman-Wunsch: example

- Alignment is finished when lower right field is reached
- This field contains the alignment score: +1
- Time complexity is O(mn)
- Backward arrows indicate the alignment path
- Corresponding alignment:
 - seq1: HEAGAWGHE-E
 - seq2: --P-AW-HEAE

∃ ► < ∃ ►</p>

Global versus local alignment

- Global alignment: score = +1:
 - seq1: HEAGAWGHE-E
 - seq2: --P-AW-HEAE
- Local alignment: score = +21:
 - seq1: HEA
 - seq2: HEA
- Local matches are much more interesting, especially when comparing a relatively short query string to a long database string

(E)

Local alignment: Smith-Waterman

- Question: How do you adapt Needleman-Wunsch to find local matches?
- Remember: the score *F* according to N-W for entry *i*, *j* can be calculated as follows:

$$F(i,j) = max \begin{cases} F(i-1,j) - d \\ F(i,j-1) - d \\ F(i-1,j-1) + s(x_i, y_j) \end{cases}$$

Local alignment: Smith-Waterman

- Question: How do you adapt Needleman-Wunsch to find local matches?
- Make it possible to start anywhere in the matrix from scratch, i.e. with score = 0
- Make it possible to stop anywhere in the matrix
- The score *F* for entry *i*, *j* can be calculated as follows:

$$F(i,j) = max \begin{cases} 0, & (start new alignment) \\ F(i-1,j) - d \\ F(i,j-1) - d \\ F(i-1,j-1) + s(x_i,y_j) \end{cases}$$

$$\gamma(d) = -gd, d = 8$$

A less exciting start:

	-	Н	Е	А	
-	0	0	0	0	-
Ρ	0	0 0 0 0	0	0	
А	0	0	0		
W	0	0			

 $\gamma(d) = -gd, d = 8$

- P A W	-	Н	Е	А	
-	0	0	0	0	
Ρ	0	0	0	0	
А	0	0	0	5	
W	0	0	0	0	

38 / 48

御 と く き と く き とう

э

$$\gamma(d) = -gd, d = 8$$

()

39 / 48

default is \land ; backpointer irrelevant for zero fields

	-	Н	Е	А	G	А	W	G	Н	Е	Е
-	0	0	0	0	0	0	0	0	0	0	0
Р	0	0	0	0	0	0	0	0	0	0	0
А	0	0	0	5	0	5	0	0	0	0	0
W	0	0	0	0	2	0	20	< 12	<4	0	0
Н	0	10	<2	0	0	0	↑ 12	18	22	<14	<6
Е	0	↑ 2	16	< 8	0	0	↑ 4	$\uparrow 10$	18	28	20
А	0	0	↑ 8	21	< 13	5	0	4	$\uparrow 10$	↑ 20	27
Е	0	0	6	† 13	18	12	< 4	0	4	16	26
Alignment = ?											

seq2:

AW-HE

	-	Н	Е	А	G	А	W	G	Н	Е	Е
-	0	0	0	0	0	0	0	0	0	0	0
Р	0	0	0	0	0	0	0	0	0	0	0
А	0	0	0	5	0	5	0	0	0	0	0
W	0	0	0	0	2	0	20	< 12	<4	0	0
Н	0	10	<2	0	0	0	↑ 12	18	22	<14	<6
Е	0	↑ 2	16	< 8	0	0	↑ 4	$\uparrow 10$	18	28	20
А	0	0	↑8	21	< 13	5	0	4	$\uparrow 10$	↑ 20	27
Е	0	0	6	† 13	18	12	< 4	0	4	16	26
Alignment: Seq1: AWGHE											

■ ► ■ 40 / 48

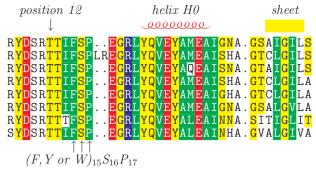
< E ► < E

- Complexity of dynamic programming algorithms is O(mn), where m = length of query string and n = length of database
- Unsatisfying for large databases, heuristic required
- Two step approach
 - step 1 (filtering): select a number of promising candidate sections in the database
 - step 2 (expansion): apply further analysis to select best matches to query
- Blast-approach: heuristic based on k-gram filtering
- k = 3 for protein string matching (20 char alphabet)
- k = 11 for base string matching (ACGT alphabet)

< 同 ト < 三 ト < 三 ト

- Example: 3-gram match (a *hit*) between HEAGAWGHEE and PAWHEAE
- A hit points to positions in x and y that are candidates for further processing by an expansion algorithm
- First observation: if size of k
 - increases, then precision increases, recall decreases
 - decreases, then precision decreases, recall increases

- Blast uses 3-grams for protein matching and 11-gram for base string matching
- Having just one 3-gram match (hit) between two strings gives a lot of false positives
- Blast applies other techniques to influence precision and recall


- Two hit diagonal principle
- A database string is a candidate when it shares two hits with the query string *on the same diagonal*, i.e. with the same distance between the hits
- OK: qu: CWYW<u>R</u>WYYC
 - db: RRWYWAWYYRR
- Wrong: qu: CWYW<u>R</u>WYYC
 - db: RRWYWABCWYYRR

- Extended version of hit notion
- Two 3-grams match if their score exceeds a threshold (default = 11)
- Example: HEAGAWGHEE and PAWHEAE
- Score for GAW PAW is -2+5+15=+18

- Intuitively, it is clear that a high score ($\gg 0$) indicates a homology, ...
- ... whereas a negative score makes it unlikely.
- Altschul (see references) gives a way to calculate probabilities from raw scores, ...
- ... but we will not go into further detail here.

Looking further...

Multiple sequence alignment

• Individual variations within a gene

47 / 48

- Durban, Eddy e.a., Biological Sequence Analysis
- Altschul e.a., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs