$n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

$n \times n$ matrices

The system of m linear equations in n variables x_1, x_2, \ldots, x_n

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

can be written as a matrix equation by Ax = b, or in full

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Elementary Maths for GMT, 1st period 2009/2010 Lectures 1–3: Linear Algebra

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

$n \times n$ matrices

The matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

has m rows and n columns, and is called an $m \times n$ matrix.

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

Special matrices

A square matrix (for which m = n) is called a diagonal matrix if all elements a_{ij} for which $i \neq j$ are zero. If all elements a_{ii} are one, then the matrix is called an identity matrix, denoted with I_m (depending on the context, the subscript m may be left out).

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

If all matrix entries are zero, then the matrix is called a zero matrix or null matrix, denoted with 0.

 $n \times n$ matrices Diagonal, Identity, and zero matrice: Addition Multiplication Transpose and inverse

Matrix addition

For two matrices A and B, we have A + B = C, with $c_{ij} = a_{ij} + b_{ij}$:

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 8 & 14 \\ 10 & 16 \\ 12 & 18 \end{bmatrix}$$

Q: what are the conditions for the dimensions of the matrices A and B?

 $n \times n$ matrices Diagonal, Identity, and zero matrice: Addition Multiplication Transpose and inverse

Matrix multiplication

Multiplying a matrix with a scalar is defined as follows: cA = B, with $b_{ij} = ca_{ij}$. For example,

$$2\begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6\\ 8 & 10 & 12\\ 14 & 16 & 18 \end{bmatrix}$$

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition **Multiplication** Transpose and inverse

Matrix multiplication

Multiplying two matrices is a bit more involved. We have AB = C with $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$. For example,

$$\begin{bmatrix} 6 & 5 & 1 & -3 \\ -2 & 1 & 8 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 5 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 2 \\ 37 & 5 & 16 \end{bmatrix}$$

Q: what are the conditions for the dimensions of the matrices A and B? What are the dimensions of C?

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

Properties of matrix multiplication

Matrix multiplication is associative and distributive over addition:

$$(AB)C = A(BC)$$
$$A(B+C) = AB + AC$$
$$(A+B)C = AC + BC$$

However, matrix multiplication is not commutative: in general, $AB \neq BA$.

Also: if AB = AC, it doesn't necessarily follow that B = C (even if A is not the zero matrix).

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

Zero and identity matrix

The zero matrix 0 has the property that if you add it to another matrix A, you get precisely A again.

A + 0 = 0 + A = A

The identity matrix I has the property that if you multiply it with another matrix A, you get precisely A again.

$$AI = IA = A$$

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition **Multiplication** Transpose and inverse

Matrix multiplication as a linear transformation: 2D

The matrix multiplication of a 2×2 square matrix and a 2×1 matrix gives a new 2×1 matrix, e.g.:

$$\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

We can interpret a 2×1 matrix as a vector; the 2×2 matrix transforms any vector into another vector.

More later ...

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

Transposed matrices

The transpose A^T of an $m \times n$ matrix A is an $n \times m$ matrix that is obtained by interchanging the rows and columns of A:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

Transposed matrices

for example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

For the transpose of the product of two matrices we have

$$(AB)^T = B^T A^T$$

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

The dot product revisited

If we regard (column) vectors as matrices, we see that the inproduct of two vectors can be written as $u \cdot v = u^T v$:

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 4\\5\\6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4\\5\\6 \end{bmatrix} = 32$$

(A 1×1 matrix is simply a number, and the brackets are omitted.)

 $n \times n$ matrices Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse

The inverse of a matrix A is a matrix A^{-1} such that $AA^{-1} = I$.

Only square matrices possibly have an inverse.

Note that the inverse of A^{-1} is A, so we have $AA^{-1} = A^{-1}A = I$

Solving systems of linear equations Inverting matrices

Gaussian elimination

Matrices are a convenient way of representing systems of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

If such a system has a unique solution, it can be solved with Gaussian elimination.

Solving systems of linear equations Inverting matrices

Gaussian elimination

Permitted operations in Gaussian elimination are

- interchanging two rows.
- multiplying a row with a (non-zero) constant.
- adding a multiple of another row to a row.

Solving systems of linear equations Inverting matrices

Gaussian elimination

Matrices are not necessary for Gaussian elimination, but very convenient, especially augmented matrices. The augmented matrix corresponding to the system of equations on the previous slides is

a_{11}	a_{12}	• • •	a_{1n}	b_1
a_{21}	a_{22}	•••	a_{2n}	b_2
÷	÷	·	÷	÷
a_{m1}	a_{m2}	•••	a_{mn}	b_m

Solving systems of linear equations Inverting matrices

Gaussian elimination: example

Suppose we want to solve the following system:

$$x + y + 2z = 17$$

$$2x + y + z = 15$$

$$x + 2y + 3z = 26$$

Q: what is the geometric interpretation of this system? And what is the interpretation of its solution?

Solving systems of linear equations Inverting matrices

Gaussian elimination: example

Applying the rules in a clever order, we get

$$\begin{bmatrix} 1 & 1 & 2 & | & 17 \\ 2 & 1 & 1 & | & 15 \\ 1 & 2 & 3 & | & 26 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 & | & 17 \\ 0 & -1 & -3 & | & -19 \\ 0 & 1 & 1 & | & 9 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 3 & | & 19 \\ 0 & 1 & 1 & | & 9 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 3 & | & 19 \\ 0 & 0 & -2 & | & -10 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 3 & | & 19 \\ 0 & 0 & -2 & | & -10 \end{bmatrix} \rightsquigarrow$$

Solving systems of linear equations Inverting matrices

Gaussian elimination: example

The interpretation of the last augmented matrix $\begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & 5 \end{bmatrix}$ is the very convenient system of linear equations $\begin{array}{ccc} x & = & 3 \\ y & = & 4 \\ z & = & 5 \end{array}$

In other words, the point (3, 4, 5) satisfies all three equations.

Solving systems of linear equations Inverting matrices

Gaussian elimination: geometric interpretation

We started with three equations, which are implicit representations of planes:

$$x + y + 2z = 17$$

$$2x + y + z = 15$$

$$x + 2y + 3z = 26$$

We ended with three other equations, which can also be interpreted as planes:

The steps in Gaussian elimination preserve the location of the solution.

Elementary Maths for GMT, 1st period 2009/2010 Lectures 1–3: Linear Algebra

Solving systems of linear equations Inverting matrices

Gaussian elimination: possible outcomes in 3D

Since any linear equation in three variables is a plane in 3D, we can interpret the possible outcomes of systems of three equations.

- O Three planes intersect in one point: the system has one unique solution
- On the planes do not have a common intersection: the system has no solution
- O Three planes have a line in common: the system has many solutions

The three planes can also coincide, then the equations are equivalent.