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n× n matrices

The system of m linear equations in n variables x1, x2, . . ., xn

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be written as a matrix equation by Ax = b, or in full



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn







x1

x2

...
xn


 =




b1
b2
...
bm



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n× n matrices

The matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




has m rows and n columns, and is called an m× n matrix.
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Special matrices

A square matrix (for which m = n) is called a diagonal matrix if all
elements aij for which i 6= j are zero. If all elements aii are one,
then the matrix is called an identity matrix, denoted with Im
(depending on the context, the subscript m may be left out).

I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




If all matrix entries are zero, then the matrix is called a zero matrix
or null matrix, denoted with 0.
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Matrix addition

For two matrices A and B, we have A+B = C, with
cij = aij + bij :




1 4
2 5
3 6


+




7 10
8 11
9 12


 =




8 14
10 16
12 18




Q: what are the conditions for the dimensions of the matrices A
and B?
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Matrix multiplication

Multiplying a matrix with a scalar is defined as follows: cA = B,
with bij = caij . For example,

2




1 2 3
4 5 6
7 8 9


 =




2 4 6
8 10 12
14 16 18



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Matrix multiplication

Multiplying two matrices is a bit more involved.
We have AB = C with cij =

∑n
k=1 aikbkj . For example,

[
6 5 1 −3
−2 1 8 4

]



1 0 0
−1 1 0
5 0 2
0 1 0


 =

[
6 2 2
37 5 16

]

Q: what are the conditions for the dimensions of the matrices A
and B? What are the dimensions of C?
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Properties of matrix multiplication

Matrix multiplication is associative and distributive over addition:

(AB)C = A(BC)
A(B + C) = AB +AC

(A+B)C = AC +BC

However, matrix multiplication is not commutative:
in general, AB 6= BA.

Also: if AB = AC, it doesn’t necessarily follow that B = C (even
if A is not the zero matrix).

Elementary Maths for GMT, 1st period 2009/2010 Lectures 1–3: Linear Algebra



Matrices
Gaussian elimination

Determinants

n× n matrices
Diagonal, Identity, and zero matrices
Addition
Multiplication
Transpose and inverse

Zero and identity matrix

The zero matrix 0 has the property that if you add it to another
matrix A, you get precisely A again.

A+ 0 = 0 +A = A

The identity matrix I has the property that if you multiply it with
another matrix A, you get precisely A again.

AI = IA = A
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Matrix multiplication as a linear transformation: 2D

The matrix multiplication of a 2× 2 square matrix and a 2× 1
matrix gives a new 2× 1 matrix, e.g.:

[
2 0
1 1

]
·
[
1
2

]
=
[
2
3

]

We can interpret a 2× 1 matrix as a vector; the 2× 2 matrix
transforms any vector into another vector.

More later . . .
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Transposed matrices

The transpose AT of an m× n matrix A is an n×m matrix that
is obtained by interchanging the rows and columns of A:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 AT =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n am2 · · · amn



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Transposed matrices

for example:

A =
[
1 2 3
4 5 6

]
AT =




1 4
2 5
3 6




For the transpose of the product of two matrices we have

(AB)T = BTAT
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The dot product revisited

If we regard (column) vectors as matrices, we see that the
inproduct of two vectors can be written as u · v = uT v:




1
2
3


 ·




4
5
6


 =

[
1 2 3

]



4
5
6


 = 32

(A 1× 1 matrix is simply a number, and the brackets are omitted.)
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Inverse matrices

The inverse of a matrix A is a matrix A−1 such that AA−1 = I.

Only square matrices possibly have an inverse.

Note that the inverse of A−1 is A, so we have AA−1 = A−1A = I
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Determinants
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Inverting matrices

Gaussian elimination

Matrices are a convenient way of representing systems of linear
equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

If such a system has a unique solution, it can be solved with
Gaussian elimination.
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Inverting matrices

Gaussian elimination

Permitted operations in Gaussian elimination are

interchanging two rows.

multiplying a row with a (non-zero) constant.

adding a multiple of another row to a row.
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Determinants
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Inverting matrices

Gaussian elimination

Matrices are not necessary for Gaussian elimination, but very
convenient, especially augmented matrices. The augmented matrix
corresponding to the system of equations on the previous slides is




a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm



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Matrices
Gaussian elimination
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Gaussian elimination: example

Suppose we want to solve the following system:

x+ y + 2z = 17
2x+ y + z = 15
x+ 2y + 3z = 26

Q: what is the geometric interpretation of this system? And what
is the interpretation of its solution?
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Gaussian elimination: example

Applying the rules in a clever order, we get




1 1 2 17
2 1 1 15
1 2 3 26


 




1 1 2 17
0 −1 −3 −19
0 1 1 9


 




1 1 2 17
0 1 3 19
0 1 1 9


 




1 0 −1 −2
0 1 3 19
0 0 −2 −10


 




1 0 −1 −2
0 1 3 19
0 0 1 5


 




1 0 0 3
0 1 0 4
0 0 1 5



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Gaussian elimination: example

The interpretation of the last augmented matrix




1 0 0 3
0 1 0 4
0 0 1 5




is the very convenient system of linear equations
x = 3
y = 4
z = 5

In other words, the point (3, 4, 5) satisfies all three equations.
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Gaussian elimination: geometric interpretation

We started with three equations, which are implicit representations
of planes:

x+ y + 2z = 17
2x+ y + z = 15
x+ 2y + 3z = 26

We ended with three other equations, which can also be
interpreted as planes:

x = 3
y = 4
z = 5

The steps in Gaussian elimination preserve the location of the
solution.
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Gaussian elimination: possible outcomes in 3D

Since any linear equation in three variables is a plane in 3D, we
can interpret the possible outcomes of systems of three equations.

1 Three planes intersect in one point: the system has one
unique solution

2 Three planes do not have a common intersection: the system
has no solution

3 Three planes have a line in common: the system has many
solutions

The three planes can also coincide, then the equations are
equivalent.
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