
Ordinal Classification

1 Introduction

When a variable is ordinal, its categories can be ranked from low to high, but the distances
between adjacent categories are unknown.

For example, so-called Likert scales ask respondents whether they strongly agree, agree,
have no opinion, disagree or strongly disagree with a statement. For an example, see
figure 1. Ordinal variables are often treated as if they were measured on an interval scale.
The dependent categories are numbered sequentially, and the linear regression model is
used. This involves the implicit assumption that the intervals between adjacent categories
are equal. For example, the distance between strongly agreeing and agreeing is assumed to
be the same as the distance between agreeing and being neutral on a Likert scale. Likewise,
averaging ordinal values (as is done in Caracal) should be frowned upon.

Another example of an ordinal scale is the classification into not relevant, relevant and
highly relevant of search results to a query.

2 Alternative route to logistic regression

For compactness we switch to vector notation and write β>x instead of β0 +
∑p

i=1 βixi.
In the new notation β is the column vector (β0, β1, . . . , βp)

> and x is the row vector
(1, x1, . . . , xp). β

>x is the dot product of these two vectors, which is β0 +
∑p

i=1 βixi.
The common path to logistic regression is to start with the observation is that linear

regression
y = β>x + ε, E[ε] = 0,
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from which it follows that

E(y | x) = P (y = 1 | x) = β>x

is not ideal for binary classification because the “probability estimates” produced are not
constrained to lie between zero and one. They can be negative and they can be larger than
one. To make sure they can’t be negative, we can perform the transformation

P (y = 1 | x) = eβ
>x,

but now the probabilities can still be larger to one, so we take instead

P (y = 1 | x) =
eβ

>x

1 + eβ>x
.

We can arrive at the logistic regression and similar models via another path as well. We
view the outcome (y = 0, 1) as a discretization of an underlying regression. Consider for
example the decision to make a large purchase. Micro-economic theory states that the
consumer makes a cost-benefit calculation. Since benefit is not observable, we model the
difference between cost and benefit as an unobserved variable y∗, such that

y∗ = β>x + ε, E[ε] = 0.

We do not observe the net benefit of the purchase, only whether it is made or not. There-
fore, our observation is

y =

{
1 if y∗ > 0
0 if y∗ ≤ 0

Now the probability that y = 1 is

P (y = 1 | x) = P (y∗ > 0)

= P (β>x + ε > 0)

= P (ε > −β>x)

If the distribution of ε is symmetric (e.g. normal or logistic), then

P (ε > −β>x) = P (ε < β>x)

= F (β>x)

Here F is the cumulative density function (cdf) of ε.

2.1 The probit and logit model

In the previous section we have established that

P (y = 1 | x) = F (β>x)
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In the so-called probit model we assume that ε has a standard normal distribution,
that is, ε ∼ N(0, 1). Thus, we have

P (y = 1 | x) = Φ(β>x)

where Φ(·) is the standard normal cumulative density function.
The assumption of unit variance in the probit model is a harmless normalization. Sup-

pose we assume that ε ∼ N(0, σ2) as would be common in linear regression. We have

P (y = 1 | x) = P (ε < β>x) = P

(
ε

σ
<
β>x

σ

)
Now ε/σ ∼ N(0, 1), so we can divide β0, . . . , βp by σ and get exactly the same probabilities
as in the other model. Since we only observe whether y is 0 or 1 (and not the value of y∗),
these models are observationally equivalent. The assumption of zero for the threshold is
likewise innocent if the model contains a constant term β0. An alternative parametrization
is to fix β0 = 0, i.e. we remove the intercept from the model:

y∗ =

p∑
i=1

βixi + ε.

Now we take

y =

{
1 if y∗ > t
0 if y∗ ≤ t

In this case the threshold t has to be estimated from the data.
For the logit (logistic regression) model

P (y = 1 | x) = Λ(β>x) =
eβ

>x

1 + eβ>x

where Λ(·) indicates the logistic cumulative density function. See figure 2 for graphs of
the logistic density and cumulative density functions. Note that the cumulative density
function is our familiar logistic response function.

3 Ordinal Logit/Probit

Why did we go through all this trouble to present an alternative reasoning to arrive at
the logistic regression model? Because we arrive at ordinal logistic regression via a similar
route. Like before, we have a latent regression model

y∗i = β>xi + εi, E[εi] = 0.

Again, y∗ is not observed (latent variable), we only observe between which thresholds y∗

falls. Let m denote the number of classes, where the classes are labeled {1, 2, . . . ,m}. Then
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Figure 2: Logistic density (red) and cumulative density function (blue)

y is defined as follows:

y =


1 if −∞ < y∗ ≤ t1
2 if t1 < y∗ ≤ t2
...

...
m if tm−1 < y∗ <∞

Here t1, . . . , tm−1 are unknown thresholds that have to be estimated from the data (together
with the coefficient vector β). In this formulation the vector β does not contain an intercept
β0. Alternatively, we could include β0 and fix one of the thresholds, e.g. we could fix t1 to
zero.

Let’s first derive the formula for the probability that y = 1. We observe y = 1 when y∗

y*

y1 2 3 4

t1 t2 t3−∞ ∞

Figure 3: Relation between y∗ (latent) and y (observed) for example with 4 class values.
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falls between t0 = −∞ and t1. Hence

P (yi = 1 | xi) = P (t0 ≤ y∗i < t1 | xi)

Substituting β>xi + εi for y∗i , we get

P (yi = 1 | xi) = P (t0 ≤ β>xi + εi < t1 | xi)

Now we subtract β>xi from all terms in the inequality to get

P (yi = 1 | xi) = P (t0 − β>xi ≤ εi < t1 − β>xi | xi)

Now recall that ε is a random variable with cumulative density function (cdf) denoted by
F . The probability that a random variable is between two values is the difference between
the cdf evaluated at these values. Therefore we have:

P (yi = 1 | xi) = P (εi < t1 − β>xi | xi)− P (εi < t0 − β>xi | xi)
= F (t1 − β>xi)− F (t0 − β>xi)

This derivation can be generalized to compute the probability of any observed outcome
yi = j given xi. Thus we have the general rule that:

P (yi = j | xi) = F (tj − β>xi)− F (tj−1 − β>xi), j = 1, . . . ,m,

where t0 = −∞, and tm =∞.
When computing P (y = 1 |x), the second term on the right hand side drops out, since

F (t0 − β>xi) = F (−∞ − β>xi) = 0. Likewise, when computing P (y = m |x), the first
term equals 1, since F (tm − β>xi) = F (∞− β>xi) = 1. So for a model with four possible
classes, the formula’s for the different outcomes are:

P (yi = 1 | xi) = F (t1 − β>xi)
P (yi = 2 | xi) = F (t2 − β>xi)− F (t1 − β>xi)
P (yi = 3 | xi) = F (t3 − β>xi)− F (t2 − β>xi)
P (yi = 4 | xi) = 1− F (t3 − β>xi)

Also, note that:

P (yi ≤ 1 | xi) = F (t1 − β>xi)
P (yi ≤ 2 | xi) = F (t2 − β>xi)
P (yi ≤ 3 | xi) = F (t3 − β>xi)
P (yi ≤ 4 | xi) = 1

In general we have P (yi ≤ j | xi) = F (tj − β>xi).
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3.1 Interpretation

The marginal effect of xk is the slope of the curve relating xk to P (y = j | x), holding all
other variables constant. Recall that

P (y = j | x) = F (tj − β>x)− F (tj−1 − β>x), j = 1, . . . ,m,

Taking the partial derivative with respect to xk we get:

∂P (y = j | x)

∂xk
=
∂F (tj − β>x)

∂xk
− ∂F (tj−1 − β>x)

∂xk
= βkF

′(tj−1 − β>x)− βkF ′(tj − β>x)

= βk
[
f(tj−1 − β>x)− f(tj − β>x)

]
,

where F ′ = f , that is f is the pdf corresponding to the cdf F .
The sign of the marginal effect of xk is not necessarily the same as the sign of βk, since

f(tj−1 − β>x)− f(tj − β>x) can be negative, and even change sign.
Since the marginal effect of xk depends on the value at which we hold the other variables

constant, as well as on the value of xk itself, we must decide on which values of the variables
to use when computing the effect. One possibility is to compute the average marginal effect
over all observations in the training sample:

mean
∂P (y = j | x)

∂xk
=

1

n

n∑
i=1

βk
[
f(tj−1 − β>xi)− f(tj − β>xi)

]
In general the marginal effect does not indicate the change in the probability that would
be observed for a unit change in xk. However, if xk varies over a region of the probability
curve that is nearly linear, then the marginal effect can be used to summarize the effect of
a unit change in xk on the probability of an outcome.

It provides more insight to interpret the model in terms of cumulative probabilities of
the class variable. Recall that

P (yi ≤ j | xi) = F (tj − β>xi).

Hence

∂P (y ≤ j | x)

∂xk
=
∂F (tj − β>x)

∂xk
= −βkF ′(tj − β>x)

= −βkf(tj − β>x).

Note that f(tj − β>x) is always positive, since f is a probability density function. So if βk
is positive, an increase in xk will lead to a decrease in P (y ≤ j) for all j = 1, . . . ,m− 1. In
other words, an increase in xk will lead to an increase in P (y ≥ j) for all j = 2, . . . ,m. In
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this specific sense, one can say that if xk increases, higher values of y become more likely.
In my view this the easiest way to see the fundamental difference between an ordinal
classification model and unordered one like the multinomial logit model. The ordinal
model pre-supposes there is a monotone relationship between the predictor variables and
the class variable. Depending of the sign of the coefficient βk of the predictor xk it can be
summarized by the following “slogans”:

• If βk is positive: the higher the value of xk, the more likely the higher class values.

• If βk is negative: the higher the value of xk, the more likely the lower class values.

4 Estimation

Recall that

P (yi = j | xi) = F (tj − β>xi)− F (tj−1 − β>xi), j = 1, . . . ,m,

where tm =∞ and t0 = −∞.
Hence, the likelihood function is

L(β, t | X,y) =
m∏
j=1

∏
i:yi=j

P (yi = j | xi, β, t)

=
m∏
j=1

∏
i:yi=j

[
F (tj − β>xi)− F (tj−1 − β>xi)

]
,

where
∏

i:yi=j
indicates we multiply over all cases where y is observed to have value j.

Taking logs, we obtain the log likelihood function

logL(β, t | X,y) =
m∑
j=1

∑
i:yi=j

log
[
F (tj − β>xi)− F (tj−1 − β>xi)

]
.

This expression can be maximized with numerical methods to estimate the t’s and β’s. We
won’t bother with the details.

5 Proportional Odds Logistic Regression

In the ordered logistic regression model we have:

P (y ≤ j | x)

P (y > j | x)
= exp(tj − β>x)

This can be seen as follows. Recall that

P (y ≤ j | x) = F (tj − β>x).
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In logistic regression we choose for F the logistic cdf

Λ(z) =
exp(z)

1 + exp(z)
,

so we get

P (y ≤ j | x) =
exp(tj − β>x)

1 + exp(tj − β>x)
.

Note also that

P (y > j | x) = 1− P (y ≤ j | x) =
1

1 + exp(tj − β>x)
,

since P (y ≤ j | x) + P (y > j | x) = 1. Hence we get

P (y ≤ j | x)

P (y > j | x)
=

exp(tj − β>x)/1 + exp(tj − β>x)

1/1 + exp(tj − β>x)

= exp(tj − β>x)

The quantity

Ωj(x) =
P (y ≤ j | x)

P (y > j | x)

is called the odds of the event y ≤ j against the event y > j happening. To determine the
effect of a change in x, consider two values of x, say x = x′ and x = x∗. The odds ratio at
x′ versus x∗ equals

Ωj(x
′)

Ωj(x∗)
=

exp(tj − β>x′)
exp(tj − β>x∗)

= exp
(
β>(x∗ − x′)

)
,

where we used the rule that ex

ey
= ex−y. Notice that the odds ratio does not depend on the

class j anymore. The odds depended on the class through tj, but this term cancelled when
we took the odds ratio. If xk increases by 1, the odds ratio equals

Ωj(x, xk + 1)

Ωj(x, xk)
= exp(−βk)

To illustrate the interpretation using odds ratios consider the coefficient for gender (fe-
male=0, male=1) in the example in section 6. We have β̂2 = −0.73, so the odds ratio
of male versus female is exp(−β̂2) = exp(0.73) = 2.1. This means that the odds of SD
versus the combined outcomes D, A, and SA are 2.1 times greater for men than for women,
holding all other variables equal (at any value). Likewise, the odds of SD and D versus A
and SA are 2.1 times greater for men then for women, and finally the odds of SD, D and
A versus SA are 2.1 times larger for men than for women.
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This example illustrates that the odds ratio

Ωj(x, xk + 1)

Ωj(x, xk)

is the same for all values of j. This is known as the proportional odds assumption, and
the reason ordinal logistic regression is often called proportional odds logistic regression.
One can perform a test to determine whether this assumption is justified for a specific
data set, but we will not discuss this. Remember: all models are wrong but some are more
useful than others. (This slogan should however not be used as an excuse to not check the
assumptions of your model!)

Finally, from
P (y ≤ j | x)

P (y > j | x)
= exp(tj − β>x),

it follows that

log

[
P (y ≤ j | x)

P (y > j | x)

]
= tj − β>x.

Hence, we can view the proportional odds logistic regression model as a collection of parallel
logistic regression models of y ≤ j against y > j. The fact that the decision boundaries
for y ≤ j against y > j run parallel to each other can be seen from the fact that the
coefficient vectors are all the same, that is, we only have a single vector of coefficients β.
The decision boundaries of y ≤ j against y > j only differ in the threshold tj. Also the
decision boundaries of P (y = j) against P (y = k) run parallel to each other. This is again
an important difference with the multinomial logit model, where the decision boundaries
of P (y = j) against P (y = k) are linear but can have an arbitrary orientation, since each
class j has its own vector of coefficients βj.

6 Example Analysis in R

In 1977 and 1989, the General Social Survey asked respondents to evaluate the following
statement:

A working mother can establish just as warm and secure a relationship with
her children as a mother who does not work.

Responses were coded in the variable warm as: 1=Strongly Disagree (SD), 2=Disagree (D),
3=Agree (A), and 4=Strongly Agree (SA). The other variables are yr89 (1 if survey year
= 1989, 0 otherwise), male (1 if male, 0 if female), white (1 if white, 0 if nonwhite), age
(age in years), ed (years of education), and prst (occupational prestige measured on some
scale).

# load package containing the data
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> library(Rchoice)

> data(Attitudes)

> dim(Attitudes)

[1] 2293 7

# convert the class label from integer to factor

> Attitudes[,1] <- as.factor(Attitudes[,1])

# load library containing proportional odds logistic regression

> library(MASS)

# fit proportional odds logistic regression (polr) model

> attitudes.polr <- polr(warm~.,data=Attitudes,Hess=T)

# show result; notice we have the following parameters: one vector of 6 coefficients

# and three thresholds (or intercepts)

> summary(attitudes.polr)

Call:

polr(formula = warm ~ ., data = Attitudes, Hess = T)

Coefficients:

Value Std. Error t value

yr89 0.523912 0.079899 6.557

male -0.733309 0.078483 -9.344

white -0.391140 0.118381 -3.304

age -0.021666 0.002469 -8.777

ed 0.067176 0.015975 4.205

prst 0.006072 0.003293 1.844

Intercepts:

Value Std. Error t value

1|2 -2.4654 0.2389 -10.3188

2|3 -0.6309 0.2333 -2.7042

3|4 1.2618 0.2340 5.3919

Residual Deviance: 5689.825

AIC: 5707.825

# use fitted model to predict class labels on the training data
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> attitudes.polr.pred <- predict(attitudes.polr,Attitudes,type="class")

# make table of true class labels against predictions

# notice that the model hardly predicts the extreme classes

> confmat.ord <- table(Attitudes[,1],attitudes.polr.pred)

> confmat.ord

attitudes.polr.pred

1 2 3 4

1 7 162 128 0

2 6 338 373 6

3 2 208 624 22

4 0 67 329 21

# compute percentage correctly predicted

> sum(diag(confmat.ord))/sum(confmat.ord)

[1] 0.4317488

# what is accuracy of predicting majority class?

> summary(Attitudes[,1])

1 2 3 4

297 723 856 417

> 856/2293

[1] 0.3733101

> library(nnet)

# fit multinomial logit model on the same data

> attitudes.multinom <- multinom(warm~.,data=Attitudes)

# show results; notice we have the following parameters: 3 vectors of 7 coefficients

> summary(attitudes.multinom)

Call:

multinom(formula = warm ~ ., data = Attitudes)

Coefficients:
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(Intercept) yr89 male white age ed prst

2 0.413324 0.7346215 0.1002630 -0.4215835 -0.002448876 0.09225126 -0.008866166

3 1.115388 1.0976382 -0.3597701 -0.5339769 -0.025004633 0.11056650 0.002433260

4 0.722171 1.1601947 -1.2264598 -0.8342253 -0.031676487 0.14357959 0.004165597

Std. Errors:

(Intercept) yr89 male white age ed prst

2 0.4290490 0.1656882 0.1410895 0.2472643 0.004424963 0.02734310 0.006157066

3 0.4303332 0.1636995 0.1411252 0.2463268 0.004482546 0.02803017 0.006138661

4 0.4928702 0.1810494 0.1676910 0.2641762 0.005218281 0.03377931 0.007002566

Residual Deviance: 5641.996

AIC: 5683.996

# use fitted model to predict class labels on the training data

> attitudes.multinom.pred <- predict(attitudes.multinom,Attitudes,type="class")

# make table of true class labels against predictions

# again the extreme classes are hardly ever predicted

> confmat.multinom <- table(Attitudes[,1],attitudes.multinom.pred)

> confmat.multinom

attitudes.multinom.pred

1 2 3 4

1 4 162 131 0

2 6 328 387 2

3 1 219 630 6

4 3 70 333 11

# compute percentage correctly predicted

> sum(diag(confmat.multinom))/sum(confmat.multinom)

[1] 0.4243349

# compare predictions of the two models

# make a vector indicating whether the multinom prediction is correct

> multinom.correct <- as.numeric(attitudes.multinom.pred == Attitudes[,1])

# make a vector indicating whether the polr prediction is correct

> polr.correct <- as.numeric(attitudes.polr.pred == Attitudes[,1])
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# make a cross table of these two vectors

> table(polr.correct,multinom.correct)

multinom.correct

polr.correct 0 1

0 1218 85

1 102 888

There are 85 cases that are predicted correctly by multinom and incorrectly by polr.
There are 102 cases that are predicted correctly by polr and incorrectly by multinom.
There is a total of 102+85=187 cases where one is wrong and the other is correct. If both
classifiers would have the same accuracy, then for each of these 187 cases the probability
would be 0.5 that polr wins and 0.5 that multinom wins. In other words, we would expect
93.5 cases in the (1,0) cell and 93.5 cases in the (0,1) cell. Let’s call a win for polr a
success. How probable is the observed number of successes (or a more extreme number)
under the null hypothesis that both classifiers have the same accuracy? To compute this
we must compute the probability of getting 102 successes or more, plus the probability of
getting 85 successes or less.

# probability of observing 85 successes or less under the null hypothesis

> pbinom(85,187,prob=0.5)

[1] 0.1209552

# probability of observing 102 successes or more under the null hypothesis

> 1-pbinom(101,187,prob=0.5)

[1] 0.1209552

Hence the p-value is about 0.24, which means that the observed difference in accuracy
is not unlikely under the null hypothesis that the true accuracies are the same. In other
words, the observed difference in accuracy is not significant.
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