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PREDICATE LOGIC
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 Formulas 
 Quantification 
 Inference rules 
 Proofs 
 Proofs involving quantification 
 Some basic proof techniques: 

• Contradiction 
• Equational 
• Case split 
• Induction



EQUATIONAL REASONING

 The main claim to prove was  
 ∀s :: rev s = rv [ ] s 

 Along the way, we proved a stronger lemma: 

(∀s :: (∀t :: rev s ++ t  =  rv t s) ) 

 This lemma directly implies the original claim!  
 without having to prove the latter through 

induction, namely by instantiating t to [ ]. 
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Hoare Logic 
LN chapter 5, 6, 9.3

Hoare Logic is used to reason about the correctness of programs. In the 
end, it reduces a program and its specification to a set of verifications 

conditions.



Overview

■ Part I 
❑ Hoare triple 
❑ Rules for basic statements	 	 // SEQ, IF,  ASG 
❑ Weakest pre-condition 
❑ Example 

■ Part II : loops 
■ Handling few more basic constructs 

■ array 
■ specification at the program level
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Part 1 : reasoning about basic statements
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Hoare Logic

■ We’ve looked into proofs about purely functional programs: 
■ result of a function only depends on its arguments 

๏ a function applied to the same argument will always give 
the same result 

■ enables equational reasoning
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reverse [3,2,1][1,2,3]
:: [Int] -> [Int]



Hoare Logic
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■ Proofs about imperative/object oriented programs: 
■ argue about how the execution of the program affects the 

state of the  
■ memory 
■ devices 
■ world



Hoare Logic

■ Proposed by Tony Hoare, Robert W. Floyd in 1969 
■ specifies the effect a program has on some state 

■ A  Hoare triple is a simple way to specify the relation between 
a program’s initial state and end state:

10

{* P *}  program   {* Q *}

the program being 
verifiedpre-condition

properties of the state  
which have to hold for 

the program to execute as  
intended

post-condition

properties we want to 
hold after program execution 



Hoare Logic

■ We’ll use a very simple imperative language 
■ arithmetic expressions 
■ skip 
■ assignments 
■ sequence of statements 
■ if-statements 
■ while-loops 
■ procedure calls 
■ (infinite) arrays 

■ The state we’re looking at is just the value of certain variables 
■ value of a variable in a stateful language: content of the memory location 

denoted by that variables, can change during execution of a program 
■ value of a variable in a functional language is like a mathematical variable: 

bound to a value once, does not change
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Hoare triple

■ Example:
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{* y≠0 *} Pr(x,y) {* return = x/y *}

the program being 
verified

pre-condition post-condition



Partial and total correctness interpretation

■ Total correctness interpretation of Hoare triple:  
■ if the program is executed on a state satisfying P, it will terminate in a state 

satisfying Q. 

■ Partial correctness interpretation: 

■ if the program is executed on a state satisfying P, and if it terminates, it will 

terminate in a state satisfying Q. 

■ Partial correctness is of course weaker, but on the other hand easier to prove. Useful 
in situations where we can afford to postpone concerns about termination.
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{* P *} program {* Q *}



Difficult to capture with standard Hoare triples

■ Limitations: not every type of behavioural properties can 
easily captured with Hoare triples.  

❑ Certain actions within a program must occur in a 
certain order. An alternative formalism to express this:  
CSP (communicating sequential processes) 

❑ A certain state in the program must be visited infinitely 
often. Alternative formalism:  temporal logic. 

❑ A certain goal must be reached despite the presence of 
adversaries in the program’s environment that may try 
to fake information. Alternative formalism: logic of belief.
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Hoare Logic

Hoare Logic often used to prove the correctness of a program in 
terms of the validity of Hoare triples.  

For each language construct, we need an inference rule to 
specify how the instruction affects the state 

Let’s start with skip:

157

    

                    {* P *} skip {* P *} 

That is: for any precondition P, if P holds, then P still holds after executing 
the program skip  



P
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Inference rule for IF

{* P ∧ g *}  S1 {* Q *}

Q

S1

S2
{* P ∧ ¬g *}S2{* Q *}

{* P ∧ g *}S1{* Q *},   {* P ∧ ¬g *}S2{* Q *} 
  
  {* P *}  if g then S1 else S2 {* Q *} 

g

¬g
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Inference rule for assignment, attempt-1

■ Idea: find a sufficient pre-condition W, that holds before the 
assignment, if and only if Q holds after the assignment. 

■ Then we prove  P ⇒ W

      
{* P *} x := e {* Q *}

??
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Examples

■ {* W? *} 	 x:=10   {*  x = y  *} 

■ {* W? *}	 x:=x+a  {*  x = y  *} 

■ {* W? *}	 x:=x+1  {*  x > 10  *} 

■ More generally, the weakest precondition W such that 
■  {* W *} x := e {* Q *} holds  

can be obtained by replacing/substituting all free occurrences of x in Q by 
the expression e 

■  We write the substitution of  x in Q by the expression e 
Q[e/x]  (note: many different notations used in literature)

W:    10 = y

W:   x+a = y

W:   x+1 > 10 
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Assignment

■ Theorem: 
 
	 Q  holds after x:=e   
iff   
        Q[e/x] holds before the assignment. 

■ Which leads to the following proof rule : 
 
	 {* P *}  x:=e  {* Q *}        ≡        P ⇒ Q[e/x]

                P ⇒ Q[e/x] 

          {* P *} x := e {* Q *} 



Sequence of  statements

■ Now that we looked at rules for individual statements, lets 
look at rules about the combination of statements:
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    {* P *}S1{* Q *}, {* Q *}S2{* R *} 

                    {* P *} S1 ; S2 {* R *} 

■ Note: this rule does not tell us how to find Q



Few other basic rules

■ Pre-condition strengthening:
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    P ⇒ Q   ,   {* Q *}   S   {* R *} 

                {* P *}   S   {* R *} 



Few other basic rules

■ Pre-condition strengthening: 

■ Post-condition weakening:
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    P ⇒ Q   ,   {* Q *}   S   {* R *} 

                {* P *}   S   {* R *} 

    {* P *}   S   {* Q *}  ,   Q ⇒ R   
  
                {* P *}   S   {* R *} 



Few other basic rules

■ Conjunction of Hoare triples:
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{* P1 *}   S   {* Q1 *}   ,  {* P2 *}   S   {* Q2 *}  
  
              {* P1 ∧ P2 *}   S   {* Q1 ∧ Q2 *} 



Few other basic rules

■ Conjunction of Hoare triples: 

■ Disjunction of Hoare triples
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{* P1 *}   S   {* Q1 *}   ,  {* P2 *}   S   {* Q2 *}  
  
              {* P1 ∧ P2 *}   S   {* Q1 ∧ Q2 *} 

{* P1 *}   S   {* Q1 *}   ,  {* P2 *}   S   {* Q2 *}  
  
              {* P1 ∨ P2 *}   S   {* Q1 ∨ Q2 *} 
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How does a proof  proceed now ?

■ {* x≠y *}    tmp:= x  ; x:=y ; y:=tmp   {* x≠y *}  

■ Rule for SEQ requires us to come up with intermediate 
assertions: 
 
 {* x≠y *}   tmp:= x {* ? *}  x:=y {* ? *}  y:=tmp  {* x≠y *}  

■ If we manage to come up with the intermediate assertions, 
Hoare logic’s rules tell us how to prove the claim. However, the 
rules do not tell us how to come up with these intermediate 
assertions in the first place,     {* P *}S1{* Q *}, {* Q *}S2{* R *} 

            {* P *} S1 ; S2 {* R *} 
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Weakest pre-condition

■ We can characterise wp, as follows (Def. 6.2.3): 
 
         {* P *}  S  {* Q  *}        ≡      P  ⇒  wp S Q 

■ wp always produces a valid pre-cond. You can prove:   
 
                       {*  wp S Q *}    S    {* Q *} 

■ wp reduces program verification problems to proving 
implications, for which we already have a tool for (Predicate 
Logic).
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Weakest pre-condition

■ Again, the characterisation of wp: 
 
         {* P *}  S  {* Q  *}        ≡      P  ⇒  wp S Q 

■ The reduction is complete. That is, if the implication above is 
not valid, neither is the specification. 
 
Note: a counter example demonstrating the invalidity of the 
implication essentially describes an input for the program/
statement S, that leads to a final state that is not in Q. Such an 
input is useful for debugging S.
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But... 

■ But this characterisation is not constructive: 
 
         

■ That is, it does not tell us how to actually calculate this 
weakest pre-condition that wp is supposed to produce. 

■ To be actually usable, we need to come up with a constructive 
definition for wp.

{* P *}  S  {* Q  *}        ≡      P  ⇒  wp S Q 



■ This is the meta property we want to have: 
 
                 P  ⇒  wp S Q      ≡       {* P *}  S  {* Q  *}  

■ A definition/implementation of wp should be at least sound; it should 
produce a safe pre-condition: 
 
               P  ⇒  wp S Q      ⇒       {* P *}  S  {* Q  *} 

■ A wp definition that satisfies the reverse property is called complete. I 
formulate it in contraposition to emphasize that it means, if the implication 
is invalid, the Hoare triple is also not valid: 
             

P  ⇒  wp S Q      ⇒       {* P *}  S  {* Q  *}
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Some notes about the weakest precondition 
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Weakest pre-condition of  skip and assignment

    wp   skip   Q        =         Q 
 
     
   wp   (x:=e)   Q     =    Q[e/x]
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wp  of   SEQ

     
wp  (S1 ; S2)   Q   =    wp  S1  (wp  S2 Q) 

■ first, calculate  R  =  wp  S2  Q 
■ then, calculate P  =  wp  S1  R 
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wp  of    IF

     
wp  (if  g  then  S1 else S2)  Q  =  (g ∧ wp  S1 Q)  ∨ (¬g ∧ wp  S2  Q) 

Q

wp S2 Q

  wp S1 Q

S2

S1

g

¬g



3326

Alternative formulation of  wp IF

     
wp  (if  g  then  S1 else S2)  Q    =   

(g  ⇒  wp  S1  Q)   ∧   (¬g ⇒ wp  S2  Q)

This formulation for the wp of if-then-else is more 
convenient for working out proofs. E.g. in a 
deductive proof its conjunctive form would translate 
to proving two goals.

=

(g ∧ wp  S1 Q)  ∨  (¬g ∧ wp  S2  Q) 
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How does a proof  proceed now ?

■ {* x≠y *} tmp:= x; x:=y; y:=tmp   {* x≠y *}



Example (informal)
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{* *}  if (x≥0) then x := x+1 else x := -x {* x>0 *}

[G1] {*    x≥0 *}  x := x+1 {* x>0 *}

[G2] {* ¬(x≥0) *}  x := -x  {* x>0 *}

How can we prove that

we need to show that

and

holds?
{* P ∧ g *}S1{* Q *},   {* P ∧ ¬g *}S2{* Q *} 
  
  {* P *}  if g then S1 else S2 {* Q *} 



Some notes about the verification approach

■ In the exercises, we prove P ⇒ W by hand. 
■ In practice, to some degree this can be automatically checked 

using e.g. a SAT solver. With a SAT solver we instead check if: 
 
	 ¬(P ⇒ W)   is satisfiable 
 
If it is, then P ⇒ W is not valid. Otherwise P ⇒ W is valid. 

■ If the definition of wp is also complete (in addition to being 
sound), the witness of the satisfiability of ¬(P ⇒ W) is essentially 
an input that will expose a bug in the program   useful for 
debugging.
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Weakest pre-condition (wp), LN Sec. 6.2

■ Imagine we have this function: 
 
	                   wp : Stmt → Pred → Pred 
 
such that  

              wp S Q  
gives the weakest valid pre-cond  P.  

■ That is, executing S in any state which satisfies P results in a 
state that satisfies Q.
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Weakest pre-condition (wp), LN Sec. 6.2

■ Again, we can have two variations of such a function: 

❑ Partial correctness based  wp assumes S to always 
terminate. 

❑ Total correctness wp: the produced pre-condition 
guarantees that S terminates when executed on that pre-
condition. 
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Example

{*  0≤i  ∧ ¬found ∧  (found   =  (∃k : 0≤k<i :  a[k]=x))  *} 
       

     found := a[i]=x; 

     i:=i+1 
 

{* found   =  (∃k: 0≤k<i:a[k]=x)  *} 

found   =  (∃k: 0≤k<i+1 :a[k]=x)

(a[i]=x)    =  (∃k: 0≤k<i+1:a[k]=x)

wp  (x:=e)  Q  =  Q[e/x]

⇒



Questions
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Questions
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Part II : reasoning about loops

LN Section 6.3 -- 6.7, and 9.3
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How to prove this ?

{* P *}   while  g  do  S   {*  Q *}

43

the while loop corresponds to:
if  g   
then 
  S; if  g 
           then 
       S; if  g 
                      then S; if  g 
                                             …   
                      else skip    
     else skip  
else skip 

               
                   

{* P ∧  g *} S;S;S;S;S;… ;S {* Q *}

       {* P ∧ ¬g *}   skip {* Q *}
}

we can’t know how many times



How to prove this ?
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Calculating wp won’t work here! 

how many times will the loop iterate?  

We might know that it will iterate for example N times, where N is 
a parameter of the program, but calculating the wp of SEQ 
requires us to know concretely how many statements are being 
composed in the sequence. 

{* P *}   while  g  do  S   {*  Q *}



Example
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{* found = false,   i = 0,   0≤N *} 

while (not found) && (i < N) do { 
   found := a[i] = x; 
   i     := i + 1; 
 } 
 
{* found = ∃k:0≤k<N:  a[k]=x     *}



Idea

	 iter1 :	 // g //  ;  S	 {* I *} 
	 iter2 :	 // g //  ;  S	 {* I *} 
	 … 
	 itern :	 // g //  ;  S	 {* I *}	 // last iteration 
	 exit :	 // ¬g //
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Come up with a predicate  I , so-called “invariant” , that 
holds at the end of every iteration.

■ Observation:   
■ I ∧ ¬g holds when the loop terminates  
■ The post-condition Q can be established if I ∧ ¬g implies Q.



Ok, what kind of  predicate is I ??

■ I needs to hold at the end of every iteration.  
■ inductively, we can assume it holds at the start of 

the iteration (established by the previous iteration).  

■ So, it is sufficient to have an I satisfying this property: 
 
 
                            {* I ∧ g *}   S   {* I *} 
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Example
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{* x > 0 *}  while  (x > 0)  do  x := x-1 {* x = 0 *}

■ We need to find  I such that :   
■    I ∧ ¬(x>0) holds when the loop terminates  
■    I ∧ ¬(x>0) implies that  x = 0. 
■ {* I ∧ (x>0)*} x := x-1  {* I *} 



Establishing the base case

The inductive argument 
{* I ∧ g *}   S   {* I *} 

does not apply for the first iteration 

We need to guarantee that the first iteration can assume I as its pre-
condition.  

We can establish this by requiring that the original precondition P 
implies this I. 
 
	



To Summarize

■ Capture this in an inference rule (Rule 6.3.2): 
 
	 P ⇒ I	 	 	 	 	      // setting up I  
	 {* g  ∧ I *}    S    {*  I  *}	 	      // invariance 
	 I  ∧ ¬g  ⇒  Q 		 	                 // exit cond 
	  
	 {* P *}   while  g  do   S    {* Q *} 

■ This rule is only good for partial correctness though.
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Few things to note

■ A special instance the previous rule is this (by taking I itself as P): 

■ If I satisfies the above two conditions, we can extend an implementation 
of wp to take this I as the wp of the loop over Q as the post-condition. 

■ This allows you to chain I into the rest of wp calculation. 
■ Such a modified wp function would still be sound, though it is no longer 

complete (in other words, the resulting pre-condition may not be the 
weakest one). 
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      {* g  ∧ I *}    S    {*  I  *}	 	       
	 I  ∧ ¬g  ⇒  Q 		 	                  
	  
	 {* I *}   while  g  do   S    {* Q *} 



Examples

■ Prove the correctness of the following loops (partial 
correctness) : 

 
            {* true *} while  i≠n  do  i++    {* i=n *} 

 
           {*  i=0 ∧ n=10 *} while i<n do i++  {* i=n *} 

    {* i=0 ∧ s=0 ∧ n=10 *}  while i<n do{s = s+2; i++} {* s=20 *}
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      {* g  ∧ I *}    S    {*  I  *}	 	       
	 I  ∧ ¬g  ⇒  Q 	 	 	                  
{* I *}   while  g  do   S    {* Q *}



Proving termination

■ Again, consider: 
 
               {* P *}   while  g  do  S   {*  Q *} 

■ Idea:  come up with an integer expression m, called 
termination metric, satisfying : 
1. At the start of every iteration m > 0 
2. Each iteration decreases m 

■ Since m has a lower bound (condition 1), it follows that the 
loop cannot iterate forever. In other words, it will terminate.
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how can we show that g will eventually be false?



Capturing the termination conditions

■ At the start of every iteration m > 0 : 

❑ g  ⇒  m > 0 
❑ If you have an invariant:   I ∧  g  ⇒  m > 0 

■ Each iteration decreases m : 
 
	 {* I ∧ g *}    C := m; S   {* m < C *}
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new value of termination 
metric after execution of S

old value of termination 
metric



To Summarize

■ Total correctness (Rule B.1.8): 
 
           P ⇒ I      // setting up I  

 {* g  ∧  I *}    S    {*  I  *}   // invariance 
 I  ∧ ¬g  ⇒  Q                // exit cond 

 {* I ∧ g *}    C:=m; S   {* m < C *}   // m decreasing  

 I ∧ g ⇒  m > 0  	 	 	 	 //  m bounded below  
	  
	 {* P *}   while  g  do   S   {* Q *} 
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Alternatively it can be formulated as follows

■ Rule B.1.7 
 
	 {* g  ∧  I *}    S    {*  I  *}   // invariance 
 I  ∧ ¬g  ⇒  Q                // exit cond 

  {* I ∧ g *}    C:=m; S   {* m<C *}   // m decreasing  
 I ∧ g ⇒  m > 0  	 	 	 	 //  m bounded below 

	  
	 {* I *}   while g do S  {* Q *} 

■ This is a special instance of B.1.8. On the other hand, together 
with the pre-condition strengthening rule it also implies B.1.8.

56



Examples

■ Prove that the following programs terminate: 

               {* i≤n *}  while i≠n do i := i+1    {* true *} 
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P ⇒ I 

{* g  ∧  I *}    S    {*  I  *}  
TC1 :  {* I ∧ g *}    C:=m; S   {* m<C *}     
TC2:    I ∧ g ⇒  m > 0  



Examples

■ Prove that the following programs terminate: 

               {* i≤n *}  while i≠n do i := i+1    {* true *} 

               {*  candy = 100 ∧ apple = 100 } 
                 while candy > 0 ∨ apple > 0  do { 
          if candy > 0  
            then { candy--;  
                   apple += 2 } 
            else { apple-- } 
                 } 
                {* true *}
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Termination metrics

■ In practice, for most terminating loops, the termination metric 
is pretty obvious 

■ In general, finding such a metric can’t be automated
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{*  n > 0 *} 
 while n > 1  do { 
   if n mod 2 = 0  
     then { n := n / 2} 
     else { n := 3 * n + 1} 
 } 
{* true *}



A bigger example

■ The following program claims to check if the array segment a[0..n) consists of 
only 0’s: 

 
               {* 0≤n *}    
                   i := 0 ; r := true ; 
    while  i < n  do  {   
            r := r ∧ (a[i]=0);    
            i := i+1 } 
              {*  r  = (∀k : 0≤k<n : a[k]=0) *}  

■ We need to propose an invariant and a termination metric. 
■ This time, the proof will be quite involved. The rule to handle loops also generates 

multiple conditions.  
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Invariant and termination metric

■ Let’s go with this choice of invariant I : 
 
      (r  = (∀k : 0≤k<i: a[k]=0))  ∧     0≤i≤n 
     

■ The termination metric m is quite obvious, namely:  m =  n - i 
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I1 I2

  {* 0≤n *}    
  i := 0 ; r := true ; 
  while  i < n  do  {   
    r := r ∧ (a[i] = 0);    
    i++ } 
  {*  r  = (∀k : 0≤k<n : a[k] = 0) *} 



It comes down to proving these

1. Exit Condition:                   

I ∧ ¬g ⇒ Q 

2. Initialization Condition:  

{* given-pre-cond *}  i := 0 ; r := true   {* I  *}, 

3. Invariance:                      

{* I ∧ g *} body {* I *} 

4. Termination Condition 1:    

{* I ∧ g *} (C :=m ; body)  {* m < C *} 

5. Termination Condition 2:  

 I ∧ g ⇒  m > 0 
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Or equivalently, prove: I ∧ g ⇒ wp body I 



Reformulating them in terms of  wp

If the components contain no loops, we can convert the Hoare triples into 
implications towards wp: 

1. Exit Condition                 I ∧ ¬g ⇒ Q 

2. Initialisation Condition  
         given-pre-cond ⇒ wp (i := 0 ; r := true) I 

3. Invariance                      I ∧ g ⇒  wp body I 

4. Termination Condition   I ∧ g ⇒ wp (C:=m ; body)  (m<C) 

5. Termination Condition   I ∧ g ⇒  m>0 

Now we can use the previous proof system for predicate logic to prove those 
implications. 
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Proof  of  init

PROOF PInit 
[A1] 0≤n  
[ G ]  
BEGIN 
1. { follows from A1 } 0≤0≤n  
2. { see subproof }  true = (∀k:0≤k<0: a[k]=0) 

3. { conjunction of 1 and 2 } G 
END
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calculated wp

EQUATIONAL PROOF 
    (∀k : 0≤k<0 : a[k]=0) 
    = { the domain is false } 
    (∀k : false : a[k]=0))  
    = {∀  over empty domain } 
    true 
END

given precon. ⇒ wp (i := 0 ; r := true) I 

  {* 0 ≤ n *}    
  i := 0 ; r := true ; 
  while  i < n  do  {   
    r := r ∧ (a[i] = 0);    
    i++ } 
  {*  r  = (∀k : 0≤k<n : a[k] = 0) *} 

I = (r  = (∀k : 0≤k<i: a[k]=0))  ∧     0≤i≤n

(true = (∀k:0≤k<0:a[k]=0))∧0≤0≤n 



Proof  of  I’s invariance

PROOF PIC (proof of the invariance condition) 
[A1]  r  = (∀k:0≤k<i: a[k]=0) 
[A2]  0≤i≤n 
[A3]  i<n 
[G1]  r ∧ (a[i]=0)= (∀k:0≤k<i+1: a[k]=0) 
[G2]  0≤i+1≤n            
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 EQUATIONAL PROOF 
(∀k : 0≤k<i+1 : a[k]=0)  
 =  {  dom. merge , PIC.A2 } 
(∀k : 0≤k<i ∨ k=i : a[k]=0) 
=  { ∀ domain-split , justified by 0≤i (PIC.A2) }   
(∀k : 0≤k<i: a[k]=0) ∧ (∀k:k=i: a[k]=0)  
=  {  PIC.A1 } 
r ∧ (∀k : k=i : a[k]=0)  
=  { quant. over singleton } 
r ∧ (a[i]=0) 
END

I1
I2
Loop guard

calculated from wp

 I ∧ g ⇒ wp body I

  {* 0 ≤ n *}    
  i := 0 ; r := true ; 
  while  i < n  do  {   
    r := r ∧ (a[i] = 0);    
    i++ } 
  {*  r  = (∀k : 0≤k<n : a[k] = 0) *} I =(r = (∀k:0≤k<i:a[k]=0)) ∧ 0≤i≤n

2. { A2 implies 0≤i+1 and A3 implies i+1≤n }  G2 
END

BEGIN 
1.   { see the subproof below }  G1



Top level structure of  the proofs of  termination

PROOF TC2 
[A1] r  = (∀k : 0≤k<i : a[k]=0) 
[A2]  0≤i≤n 
[A3]  i < n 
[G]    n - i > 0  
.... 
END
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  {* 0 ≤ n *}    
  i := 0 ; r := true ; 
  while  i < n  do  {   
    r := r ∧ (a[i] = 0);    
    i++ } 
  {*  r  = (∀k : 0≤k<n : a[k] = 0) *} 

TC2 = I ∧ g ⇒  n-i > 0  

PROOF TC1  (proof of the 1st termination condition) 
[A1]  r  = (∀k:0≤k<i:a[k]=0) 
[A2]  0≤i≤n 
[A3]  i < n 
[G]   n-(i+1)  < n - i                                     
     .... 
 END

TC1:  I ∧ g ⇒ wp (C:= n - i; body)  (n - i < C)   

I = (r =(∀k:0≤k<i:a[k]=0)) ∧ 0≤i≤n



Loop with breaks, LN Sec. 9.3

■ There is no break statement in uPL, but we can still look at 
the concept behind it, namely to stop a loop earlier because 
we know that it has achieved its objective. 
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i := 0 ; r := true ; 
while  i<n do  {  
  r := r ∧ (a[i]=0);   
  i++  
}

i := 0 ; r := true ; 
while i<n ∧ ¬r do  {  
  r := r ∧ (a[i]=0);   
  i++  
}

■ How to prove that breaking the loop early is indeed safe?



Loop with breaks
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{* P *}   while g  ∧  h  do S   {* Q *}(2)

{* P *}   while g    do S   {* Q *}(1)

Consider the following loop, which has been proven 
correct using an invariant I and a termination metric m:

Suppose now we optimise the loop by adding a “break” 
to let it terminate early in some situations

The validity of (1) implies 
■  (2) will also terminate 
■ (2) will also maintain I’s invariance 
■ If g becomes false, (2) will terminate in Q



Loop with breaks

69

I  ∧ ¬(g ∧ h)  ⇒  Q The only premise which is stronger than what we have is:

Since we’ve already shown that I  ∧ ¬g   ⇒  Q 

all that’s left to prove is I  ∧ g ∧ ¬h   ⇒  Q 

{* g  ∧  h  ∧  I *}    S    {*  I  *}   
I  ∧ ¬(g ∧ h)  ⇒  Q 

{* I ∧ g ∧ h *}    C:=m; S   {* m<C *}      
I ∧ g ∧  h ⇒  m > 0  	                

{* I *}   while (g  ∧  h) do S  {* Q *} 

That is, we need to prove the premises 
of this rule:

when we already showed that:

1. {* g  ∧  I *}    S    {*  I  *}   
2. I  ∧ ¬(g)  ⇒  Q 

3.  {* I ∧ g *}    C:=m; S   {* m<C *}      
4.  I ∧ g ⇒  m > 0  
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Example

54

{* 0≤n *}    
i := 0 ; r := true ; 
while  i<n    do  {  
  r := r ∧ (a[i]=0)  ;   
  i++  
} 
{*  r = (∀k : 0≤k<n : a[k]=0) *}  

∧ r

We have proven the basic form of this program (without the break with ∧ r) before. 
Now prove that with the break the program is still correct.

I :  (r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n

I ∧ g ∧ ¬h  ⇒  Q

(r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n ∧ i<n ∧ ¬r  
               

I g ¬h

⇒ r = (∀k : 0≤k<n : a[k]=0)
Q



Dealing with more constructs 

LN Section 6.10 -- 6.12
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Simultaneous assignment

■ Simultaneous  assignment x,y := e1,e2 evaluates e1 and 
e2 in the current state to values v1 and v2, then assign these 
to x and y respectively. 

■ Simultaneous substitution Q[e1,e2/x,y] replaces any free 
occurrence of x in Q with e1, and y with e2. In particular, we 
should not do the substitution of y after the substitution of x, 
nor the other way around.
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x,y := e1,e2

wp (x,y := e1,e2) Q  =  Q[e1,e2/x,y]



The order of  assignment matters

■ The order in which you assign variables matters (you already 
know this). E.g. these three have different behaviour: 

   wp  (x:=x*y; y:=x+y)  (x=2 ∧ y=1) 
    
           equivalent to:  x=-2 ∧  y=-1 
 
     wp  (y:=x+y; x:=x*y)  (x=2 ∧ y=1)  

      equivalent to: x=2 ∧ y=-1 
 
     wp  (x,y := x*y, x+y)   (x=2 ∧ y=1)             
 
          which has no integer solution.
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 =  x*y=2  ∧  x*y+y=1 

=  x(x+y)=2 ∧  x+y=1

 =    x*y=2 ∧ x+y=1  



Assignment into an array

■ Recall : 
 
	 	  

■ Can we extend the rule to a[e1] := e2? 
■ Let’s try and see: 
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{*  y = 10  *} a[i] := y {* a[i] = 10  *} 

{*  a[0] = 10  *} a[i] := y {* a[0] =10  *} 

(valid pre-cond)

(not a valid pre-cond)

wp  (x:=e)  Q     =     Q[e/x]

{*  (i=0 → y | a[0])  = 10  *} Fix :

(c → e1 | e2) 
= 

if c then e1 else e2



The formalism

■ Let a be an array. Introduce this notation to mean the same 
array as a, except its i-th  element, which is e: 

 
	  
■ Formally defined via this equation: 

 

  
■ Treat array assignments like a[i] := e as the assignment  

 
	 	 	 a  :=  a(i repby e) 
This has the same effect, but now we can safely use the old wp 
rule for assignment.
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   a (i  repby  e)

a(i repby e)[k]  =  (i=k  →  e  |  a[k])



Example

■ Let’s first calculate the wp
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{*  a[k] = 0  *}

a[i]:=1       //  a := a(i repby 1)

{*  a(i repby 1)[k]  = 0 *}

{* (i=k → 1 | a[k]) = 0 *}

a[k]:=0                //  a :=  a(k repby 0)

{*  (i=k → 1 | a(k repby 0)[k]) = 0 *}

{*  (i=k → 1 | 0)              = 0 *}

// wp

// def. repby

// wp

// def. repby

■ Prove:     {* i≠k *}     a[k]:= 0 ; a[i]:=1     {* a[k] = 0 *}

■ Now we need to prove that i≠k implies the wp.



Example

77



Example
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Next up

■ The semantics of program calls 

■ How to find loop invariants 

■ Tail recursion and loops 

■ Using program calls 
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Reducing a program spec to a statement spec

■ So far, we only looked Hoare logic at the statement level 

■ Let’s now look at the program level 

■ How can we show that a specification of a program P is 
correct?
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{* R  *}    P(x : int, …) body {*  Q *}



Reducing a program spec to a statement spec

■ uPl supports simple program definitions 
■ program name: P 
■ formals parameters (more about these later): x, y, z, …   
■ sequence of statements: S1; S2; S3; …  
■ a single return statement at the end (optional) 
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    P(x, y, z, …) { S1; S2; S3; …; return e} ;



Reducing a program spec to a statement spec

■ Consider the program below with the given specification: 
 
 

■ We first need to reduce such a program-level specification to a 
specification in terms of its body. 

■ Such reduction raises several issues: 

❑ What is the logic of a return statement ? 

❑ Should x in the post condition refer to its initial or final value? 

❑ How to refer to the old value of a variable? 
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{* x > 0 *}    P(x) { x++ ; return x } {*  return  = x+1 *}



Some restrictions imposed on uPL

■ Restrictions imposed on uPL: 

❑ the return statement should only appear as the last statement in 
the program. 

❑ formulas in the pre- and post-conditions of a program-level 
specification of a program P can only refer to P’s parameters or to 
auxiliary variables (explained later). 

❑ parameters are either passed by value, or passed by copy-restore. 
In particular uPL does not allow references/pointers to be passed to 
a program. 
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Pass by copy-restore

■ Arrays are by default passed by copy-restore. A parameter 
with OUT marker is passed by copy-restore.  

■ Example: 
 
   P(OUT  x, OUT y) { x := true ; y := false } 

■ The behaviour of a call e.g.  P(a,b) is as follows:  
 
The values of a and b are copied to P’s local variables x and y. 
The the body of P is executed. Then the final values of x and y 
are copied to a and b, in that order.
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Pass by copy-restore, why?
■ Why not pass-by-reference?  

■ this could create aliases (different variables pointing to the same data-
cell). This complicates the logic of assignment. Recall this logic: 
 
 
 
This assignment will now also affect the meaning of x’s aliases! The 
above logic is too simplistic to handle this. 

■ In this course we want to avoid this complication, to focus more on the 
basic Hoare logic. 

■ Pass-by-copy-restore still allows us to simulate programs with side effect, 
which is an interesting class to consider. 
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{* P *}  x:= e  {* Q *}     =    P ⇒ Q[e/x]



Meaning of  variables in the post-condition

■ If y is a pass-by-copy-restore parameter, in the post-condition 
it refers to its final value. Example: 
 

■ If x is a pass-by-value parameter, in the post-condition it refers 
to its initial value. Example:
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{* true *}P(x, OUT y){y := x; x:=0}  {* y = x *}

{* true *}  P(OUT y) { y := 1 }  {* y > 0 *}



Example of  the reduction

■ Consider again the previous example. To reduce the 
specification to the statement level we will do the following 
transformation: 
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{* x > 0 *}  P(x:int){ x++ ; return x } {*  return  = x+1 *}

{* x > 0 *} {* return  = X+1 *}x++;return := xX:=x ;

Introduce auxiliary variable(s) 
to remember the initial value of 

the parameters,

Replace pass-by-value 
parameters with reference to 

their initial values.



How to refer to parameters’ old value?

■ Consider a program P(OUT x) that increases the value of x 
by one. How to write a specification of this P? Again, we will 
use an auxiliary variable to remember x’s old value:
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{* true *}   
    X:=x; P(OUT x){x := x+1}   
{* x = X+1 *}

Here, X is an auxiliary variable. It is 
not part of the program P. It is 
introduced just for the purpose of 
expressing P’s specification.

{* true *}  X:=x; x := x+1 {* x = X+1 *} The corresponding statement-
level specification.


