
SOFTWARE TESTING & VERIFICATION

1

 Welcome back to Software Testing and Verification!

TODO

Gabriele Keller
 g.k.keller@uu.nl

PREDICATE LOGIC

2

 Formulas
 Quantification
 Inference rules
 Proofs
 Proofs involving quantification
 Some basic proof techniques:

• Contradiction
• Equational
• Case split
• Induction

EQUATIONAL REASONING

 The main claim to prove was
 ∀s :: rev s = rv [] s

 Along the way, we proved a stronger lemma:

(∀s :: (∀t :: rev s ++ t = rv t s))

 This lemma directly implies the original claim!
 without having to prove the latter through

induction, namely by instantiating t to [].

3

4

Hoare Logic
LN chapter 5, 6, 9.3

Hoare Logic is used to reason about the correctness of programs. In the
end, it reduces a program and its specification to a set of verifications

conditions.

Overview

■ Part I
❑ Hoare triple
❑ Rules for basic statements	 	 // SEQ, IF, ASG
❑ Weakest pre-condition
❑ Example

■ Part II : loops
■ Handling few more basic constructs

■ array
■ specification at the program level

6

Part 1 : reasoning about basic statements

7

Hoare Logic

■ We’ve looked into proofs about purely functional programs:
■ result of a function only depends on its arguments

๏ a function applied to the same argument will always give
the same result

■ enables equational reasoning

8

reverse [3,2,1][1,2,3]
:: [Int] -> [Int]

Hoare Logic

9

■ Proofs about imperative/object oriented programs:
■ argue about how the execution of the program affects the

state of the
■ memory
■ devices
■ world

Hoare Logic

■ Proposed by Tony Hoare, Robert W. Floyd in 1969
■ specifies the effect a program has on some state

■ A Hoare triple is a simple way to specify the relation between
a program’s initial state and end state:

10

{* P *} program {* Q *}

the program being
verifiedpre-condition

properties of the state
which have to hold for

the program to execute as
intended

post-condition

properties we want to
hold after program execution

Hoare Logic

■ We’ll use a very simple imperative language
■ arithmetic expressions
■ skip
■ assignments
■ sequence of statements
■ if-statements
■ while-loops
■ procedure calls
■ (infinite) arrays

■ The state we’re looking at is just the value of certain variables
■ value of a variable in a stateful language: content of the memory location

denoted by that variables, can change during execution of a program
■ value of a variable in a functional language is like a mathematical variable:

bound to a value once, does not change

11

Hoare triple

■ Example:

12

{* y≠0 *} Pr(x,y) {* return = x/y *}

the program being
verified

pre-condition post-condition

Partial and total correctness interpretation

■ Total correctness interpretation of Hoare triple:
■ if the program is executed on a state satisfying P, it will terminate in a state

satisfying Q.

■ Partial correctness interpretation:

■ if the program is executed on a state satisfying P, and if it terminates, it will

terminate in a state satisfying Q.

■ Partial correctness is of course weaker, but on the other hand easier to prove. Useful
in situations where we can afford to postpone concerns about termination.

13

{* P *} program {* Q *}

Difficult to capture with standard Hoare triples

■ Limitations: not every type of behavioural properties can
easily captured with Hoare triples.

❑ Certain actions within a program must occur in a
certain order. An alternative formalism to express this:
CSP (communicating sequential processes)

❑ A certain state in the program must be visited infinitely
often. Alternative formalism: temporal logic.

❑ A certain goal must be reached despite the presence of
adversaries in the program’s environment that may try
to fake information. Alternative formalism: logic of belief.

14

Hoare Logic

Hoare Logic often used to prove the correctness of a program in
terms of the validity of Hoare triples.

For each language construct, we need an inference rule to
specify how the instruction affects the state

Let’s start with skip:

157

 {* P *} skip {* P *}

That is: for any precondition P, if P holds, then P still holds after executing
the program skip

P

168

Inference rule for IF

{* P ∧ g *} S1 {* Q *}

Q

S1

S2
{* P ∧ ¬g *}S2{* Q *}

{* P ∧ g *}S1{* Q *}, {* P ∧ ¬g *}S2{* Q *}

 {* P *} if g then S1 else S2 {* Q *}

g

¬g

179

Inference rule for assignment, attempt-1

■ Idea: find a sufficient pre-condition W, that holds before the
assignment, if and only if Q holds after the assignment.

■ Then we prove P ⇒ W

{* P *} x := e {* Q *}

??

1810

Examples

■ {* W? *} 	 x:=10 {* x = y *}

■ {* W? *}	 x:=x+a {* x = y *}

■ {* W? *}	 x:=x+1 {* x > 10 *}

■ More generally, the weakest precondition W such that
■ {* W *} x := e {* Q *} holds

can be obtained by replacing/substituting all free occurrences of x in Q by
the expression e

■ We write the substitution of x in Q by the expression e
Q[e/x] (note: many different notations used in literature)

W: 10 = y

W: x+a = y

W: x+1 > 10

1911

Assignment

■ Theorem:

	 Q holds after x:=e
iff
 Q[e/x] holds before the assignment.

■ Which leads to the following proof rule :

	 {* P *} x:=e {* Q *} ≡ P ⇒ Q[e/x]

 P ⇒ Q[e/x]

 {* P *} x := e {* Q *}

Sequence of statements

■ Now that we looked at rules for individual statements, lets
look at rules about the combination of statements:

20

 {* P *}S1{* Q *}, {* Q *}S2{* R *}

 {* P *} S1 ; S2 {* R *}

■ Note: this rule does not tell us how to find Q

Few other basic rules

■ Pre-condition strengthening:

21

 P ⇒ Q , {* Q *} S {* R *}

 {* P *} S {* R *}

Few other basic rules

■ Pre-condition strengthening:

■ Post-condition weakening:

22

 P ⇒ Q , {* Q *} S {* R *}

 {* P *} S {* R *}

 {* P *} S {* Q *} , Q ⇒ R

 {* P *} S {* R *}

Few other basic rules

■ Conjunction of Hoare triples:

23

{* P1 *} S {* Q1 *} , {* P2 *} S {* Q2 *}

 {* P1 ∧ P2 *} S {* Q1 ∧ Q2 *}

Few other basic rules

■ Conjunction of Hoare triples:

■ Disjunction of Hoare triples

24

{* P1 *} S {* Q1 *} , {* P2 *} S {* Q2 *}

 {* P1 ∧ P2 *} S {* Q1 ∧ Q2 *}

{* P1 *} S {* Q1 *} , {* P2 *} S {* Q2 *}

 {* P1 ∨ P2 *} S {* Q1 ∨ Q2 *}

2514

How does a proof proceed now ?

■ {* x≠y *} tmp:= x ; x:=y ; y:=tmp {* x≠y *}

■ Rule for SEQ requires us to come up with intermediate
assertions:

 {* x≠y *} tmp:= x {* ? *} x:=y {* ? *} y:=tmp {* x≠y *}

■ If we manage to come up with the intermediate assertions,
Hoare logic’s rules tell us how to prove the claim. However, the
rules do not tell us how to come up with these intermediate
assertions in the first place, {* P *}S1{* Q *}, {* Q *}S2{* R *}

 {* P *} S1 ; S2 {* R *}

2617

Weakest pre-condition

■ We can characterise wp, as follows (Def. 6.2.3):

 {* P *} S {* Q *} ≡ P ⇒ wp S Q

■ wp always produces a valid pre-cond. You can prove:

 {* wp S Q *} S {* Q *}

■ wp reduces program verification problems to proving
implications, for which we already have a tool for (Predicate
Logic).

2718

Weakest pre-condition

■ Again, the characterisation of wp:

 {* P *} S {* Q *} ≡ P ⇒ wp S Q

■ The reduction is complete. That is, if the implication above is
not valid, neither is the specification.

Note: a counter example demonstrating the invalidity of the
implication essentially describes an input for the program/
statement S, that leads to a final state that is not in Q. Such an
input is useful for debugging S.

2819

But...

■ But this characterisation is not constructive:

■ That is, it does not tell us how to actually calculate this
weakest pre-condition that wp is supposed to produce.

■ To be actually usable, we need to come up with a constructive
definition for wp.

{* P *} S {* Q *} ≡ P ⇒ wp S Q

■ This is the meta property we want to have:

 P ⇒ wp S Q ≡ {* P *} S {* Q *}

■ A definition/implementation of wp should be at least sound; it should
produce a safe pre-condition:

 P ⇒ wp S Q ⇒ {* P *} S {* Q *}

■ A wp definition that satisfies the reverse property is called complete. I
formulate it in contraposition to emphasize that it means, if the implication
is invalid, the Hoare triple is also not valid:

P ⇒ wp S Q ⇒ {* P *} S {* Q *}

2920

Some notes about the weakest precondition

3021

Weakest pre-condition of skip and assignment

 wp skip Q = Q

 wp (x:=e) Q = Q[e/x]

3123

wp of SEQ

wp (S1 ; S2) Q = wp S1 (wp S2 Q)

■ first, calculate R = wp S2 Q
■ then, calculate P = wp S1 R

3225

wp of IF

wp (if g then S1 else S2) Q = (g ∧ wp S1 Q) ∨ (¬g ∧ wp S2 Q)

Q

wp S2 Q

 wp S1 Q

S2

S1

g

¬g

3326

Alternative formulation of wp IF

wp (if g then S1 else S2) Q =

(g ⇒ wp S1 Q) ∧ (¬g ⇒ wp S2 Q)

This formulation for the wp of if-then-else is more
convenient for working out proofs. E.g. in a
deductive proof its conjunctive form would translate
to proving two goals.

=

(g ∧ wp S1 Q) ∨ (¬g ∧ wp S2 Q)

3427

How does a proof proceed now ?

■ {* x≠y *} tmp:= x; x:=y; y:=tmp {* x≠y *}

Example (informal)

35

{* *} if (x≥0) then x := x+1 else x := -x {* x>0 *}

[G1] {* x≥0 *} x := x+1 {* x>0 *}

[G2] {* ¬(x≥0) *} x := -x {* x>0 *}

How can we prove that

we need to show that

and

holds?
{* P ∧ g *}S1{* Q *}, {* P ∧ ¬g *}S2{* Q *}

 {* P *} if g then S1 else S2 {* Q *}

Some notes about the verification approach

■ In the exercises, we prove P ⇒ W by hand.
■ In practice, to some degree this can be automatically checked

using e.g. a SAT solver. With a SAT solver we instead check if:

	 ¬(P ⇒ W) is satisfiable

If it is, then P ⇒ W is not valid. Otherwise P ⇒ W is valid.

■ If the definition of wp is also complete (in addition to being
sound), the witness of the satisfiability of ¬(P ⇒ W) is essentially
an input that will expose a bug in the program useful for
debugging.

36

3715

Weakest pre-condition (wp), LN Sec. 6.2

■ Imagine we have this function:

	 wp : Stmt → Pred → Pred

such that

 wp S Q
gives the weakest valid pre-cond P.

■ That is, executing S in any state which satisfies P results in a
state that satisfies Q.

3815

Weakest pre-condition (wp), LN Sec. 6.2

■ Again, we can have two variations of such a function:

❑ Partial correctness based wp assumes S to always
terminate.

❑ Total correctness wp: the produced pre-condition
guarantees that S terminates when executed on that pre-
condition.

39

Example

{* 0≤i ∧ ¬found ∧ (found = (∃k : 0≤k<i : a[k]=x)) *}

 found := a[i]=x;

 i:=i+1

{* found = (∃k: 0≤k<i:a[k]=x) *}

found = (∃k: 0≤k<i+1 :a[k]=x)

(a[i]=x) = (∃k: 0≤k<i+1:a[k]=x)

wp (x:=e) Q = Q[e/x]

⇒

Questions

40

Questions

41

Part II : reasoning about loops

LN Section 6.3 -- 6.7, and 9.3

42

How to prove this ?

{* P *} while g do S {* Q *}

43

the while loop corresponds to:
if g
then
 S; if g
 then
 S; if g
 then S; if g
 …
 else skip
 else skip
else skip

{* P ∧ g *} S;S;S;S;S;… ;S {* Q *}

 {* P ∧ ¬g *} skip {* Q *}
}

we can’t know how many times

How to prove this ?

44

Calculating wp won’t work here!

how many times will the loop iterate?

We might know that it will iterate for example N times, where N is
a parameter of the program, but calculating the wp of SEQ
requires us to know concretely how many statements are being
composed in the sequence.

{* P *} while g do S {* Q *}

Example

45

{* found = false, i = 0, 0≤N *}

while (not found) && (i < N) do {
 found := a[i] = x;
 i := i + 1;
 }

{* found = ∃k:0≤k<N: a[k]=x *}

Idea

	 iter1 :	 // g // ; S	 {* I *}
	 iter2 :	 // g // ; S	 {* I *}
	 …
	 itern :	 // g // ; S	 {* I *}	 // last iteration
	 exit :	 // ¬g //

46

Come up with a predicate I , so-called “invariant” , that
holds at the end of every iteration.

■ Observation:
■ I ∧ ¬g holds when the loop terminates
■ The post-condition Q can be established if I ∧ ¬g implies Q.

Ok, what kind of predicate is I ??

■ I needs to hold at the end of every iteration.
■ inductively, we can assume it holds at the start of

the iteration (established by the previous iteration).

■ So, it is sufficient to have an I satisfying this property:

 {* I ∧ g *} S {* I *}

	

47

Example

48

{* x > 0 *} while (x > 0) do x := x-1 {* x = 0 *}

■ We need to find I such that :
■ I ∧ ¬(x>0) holds when the loop terminates
■ I ∧ ¬(x>0) implies that x = 0.
■ {* I ∧ (x>0)*} x := x-1 {* I *}

Establishing the base case

The inductive argument
{* I ∧ g *} S {* I *}

does not apply for the first iteration

We need to guarantee that the first iteration can assume I as its pre-
condition.

We can establish this by requiring that the original precondition P
implies this I.

	

To Summarize

■ Capture this in an inference rule (Rule 6.3.2):

	 P ⇒ I	 	 	 	 	 // setting up I
	 {* g ∧ I *} S {* I *}	 	 // invariance
	 I ∧ ¬g ⇒ Q 		 	 // exit cond
	
	 {* P *} while g do S {* Q *}

■ This rule is only good for partial correctness though.

50

Few things to note

■ A special instance the previous rule is this (by taking I itself as P):

■ If I satisfies the above two conditions, we can extend an implementation
of wp to take this I as the wp of the loop over Q as the post-condition.

■ This allows you to chain I into the rest of wp calculation.
■ Such a modified wp function would still be sound, though it is no longer

complete (in other words, the resulting pre-condition may not be the
weakest one).

51

 		 	 	 	 	
 {* g ∧ I *} S {* I *}	 	
	 I ∧ ¬g ⇒ Q 		 	
	
	 {* I *} while g do S {* Q *}

Examples

■ Prove the correctness of the following loops (partial
correctness) :

 {* true *} while i≠n do i++ {* i=n *}

 {* i=0 ∧ n=10 *} while i<n do i++ {* i=n *}

 {* i=0 ∧ s=0 ∧ n=10 *} while i<n do{s = s+2; i++} {* s=20 *}

52

 {* g ∧ I *} S {* I *}	 	
	 I ∧ ¬g ⇒ Q 	 	 	
{* I *} while g do S {* Q *}

Proving termination

■ Again, consider:

 {* P *} while g do S {* Q *}

■ Idea: come up with an integer expression m, called
termination metric, satisfying :
1. At the start of every iteration m > 0
2. Each iteration decreases m

■ Since m has a lower bound (condition 1), it follows that the
loop cannot iterate forever. In other words, it will terminate.

53

how can we show that g will eventually be false?

Capturing the termination conditions

■ At the start of every iteration m > 0 :

❑ g ⇒ m > 0
❑ If you have an invariant: I ∧ g ⇒ m > 0

■ Each iteration decreases m :

	 {* I ∧ g *} C := m; S {* m < C *}

54

new value of termination
metric after execution of S

old value of termination
metric

To Summarize

■ Total correctness (Rule B.1.8):

 P ⇒ I // setting up I

 {* g ∧ I *} S {* I *} // invariance
 I ∧ ¬g ⇒ Q // exit cond

 {* I ∧ g *} C:=m; S {* m < C *} // m decreasing

 I ∧ g ⇒ m > 0 	 	 	 	 // m bounded below
	
	 {* P *} while g do S {* Q *}

55

Alternatively it can be formulated as follows

■ Rule B.1.7

	 {* g ∧ I *} S {* I *} // invariance
 I ∧ ¬g ⇒ Q // exit cond

 {* I ∧ g *} C:=m; S {* m<C *} // m decreasing
 I ∧ g ⇒ m > 0 	 	 	 	 // m bounded below

	
	 {* I *} while g do S {* Q *}

■ This is a special instance of B.1.8. On the other hand, together
with the pre-condition strengthening rule it also implies B.1.8.

56

Examples

■ Prove that the following programs terminate:

 {* i≤n *} while i≠n do i := i+1 {* true *}

57

P ⇒ I

{* g ∧ I *} S {* I *}
TC1 : {* I ∧ g *} C:=m; S {* m<C *}
TC2: I ∧ g ⇒ m > 0

Examples

■ Prove that the following programs terminate:

 {* i≤n *} while i≠n do i := i+1 {* true *}

 {* candy = 100 ∧ apple = 100 }
 while candy > 0 ∨ apple > 0 do {
 if candy > 0
 then { candy--;
 apple += 2 }
 else { apple-- }
 }
 {* true *}

58

Termination metrics

■ In practice, for most terminating loops, the termination metric
is pretty obvious

■ In general, finding such a metric can’t be automated

59

{* n > 0 *}
 while n > 1 do {
 if n mod 2 = 0
 then { n := n / 2}
 else { n := 3 * n + 1}
 }
{* true *}

A bigger example

■ The following program claims to check if the array segment a[0..n) consists of
only 0’s:

 {* 0≤n *}
 i := 0 ; r := true ;
 while i < n do {
 r := r ∧ (a[i]=0);
 i := i+1 }
 {* r = (∀k : 0≤k<n : a[k]=0) *}

■ We need to propose an invariant and a termination metric.
■ This time, the proof will be quite involved. The rule to handle loops also generates

multiple conditions.

60

Invariant and termination metric

■ Let’s go with this choice of invariant I :

 (r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n

■ The termination metric m is quite obvious, namely: m = n - i

61

I1 I2

 {* 0≤n *}
 i := 0 ; r := true ;
 while i < n do {
 r := r ∧ (a[i] = 0);
 i++ }
 {* r = (∀k : 0≤k<n : a[k] = 0) *}

It comes down to proving these

1. Exit Condition:

I ∧ ¬g ⇒ Q

2. Initialization Condition:

{* given-pre-cond *} i := 0 ; r := true {* I *},

3. Invariance:

{* I ∧ g *} body {* I *}

4. Termination Condition 1:

{* I ∧ g *} (C :=m ; body) {* m < C *}

5. Termination Condition 2:

 I ∧ g ⇒ m > 0

62

Or equivalently, prove: I ∧ g ⇒ wp body I

Reformulating them in terms of wp

If the components contain no loops, we can convert the Hoare triples into
implications towards wp:

1. Exit Condition I ∧ ¬g ⇒ Q

2. Initialisation Condition
 given-pre-cond ⇒ wp (i := 0 ; r := true) I

3. Invariance I ∧ g ⇒ wp body I

4. Termination Condition I ∧ g ⇒ wp (C:=m ; body) (m<C)

5. Termination Condition I ∧ g ⇒ m>0

Now we can use the previous proof system for predicate logic to prove those
implications.

63

Proof of init

PROOF PInit
[A1] 0≤n
[G]
BEGIN
1. { follows from A1 } 0≤0≤n
2. { see subproof } true = (∀k:0≤k<0: a[k]=0)

3. { conjunction of 1 and 2 } G
END

64

calculated wp

EQUATIONAL PROOF
 (∀k : 0≤k<0 : a[k]=0)
 = { the domain is false }
 (∀k : false : a[k]=0))
 = {∀ over empty domain }
 true
END

given precon. ⇒ wp (i := 0 ; r := true) I

 {* 0 ≤ n *}
 i := 0 ; r := true ;
 while i < n do {
 r := r ∧ (a[i] = 0);
 i++ }
 {* r = (∀k : 0≤k<n : a[k] = 0) *}

I = (r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n

(true = (∀k:0≤k<0:a[k]=0))∧0≤0≤n

Proof of I’s invariance

PROOF PIC (proof of the invariance condition)
[A1] r = (∀k:0≤k<i: a[k]=0)
[A2] 0≤i≤n
[A3] i<n
[G1] r ∧ (a[i]=0)= (∀k:0≤k<i+1: a[k]=0)
[G2] 0≤i+1≤n

65

 EQUATIONAL PROOF
(∀k : 0≤k<i+1 : a[k]=0)
 = { dom. merge , PIC.A2 }
(∀k : 0≤k<i ∨ k=i : a[k]=0)
= { ∀ domain-split , justified by 0≤i (PIC.A2) }
(∀k : 0≤k<i: a[k]=0) ∧ (∀k:k=i: a[k]=0)
= { PIC.A1 }
r ∧ (∀k : k=i : a[k]=0)
= { quant. over singleton }
r ∧ (a[i]=0)
END

I1
I2
Loop guard

calculated from wp

 I ∧ g ⇒ wp body I

 {* 0 ≤ n *}
 i := 0 ; r := true ;
 while i < n do {
 r := r ∧ (a[i] = 0);
 i++ }
 {* r = (∀k : 0≤k<n : a[k] = 0) *} I =(r = (∀k:0≤k<i:a[k]=0)) ∧ 0≤i≤n

2. { A2 implies 0≤i+1 and A3 implies i+1≤n } G2
END

BEGIN
1. { see the subproof below } G1

Top level structure of the proofs of termination

PROOF TC2
[A1] r = (∀k : 0≤k<i : a[k]=0)
[A2] 0≤i≤n
[A3] i < n
[G] n - i > 0
....
END

66

 {* 0 ≤ n *}
 i := 0 ; r := true ;
 while i < n do {
 r := r ∧ (a[i] = 0);
 i++ }
 {* r = (∀k : 0≤k<n : a[k] = 0) *}

TC2 = I ∧ g ⇒ n-i > 0

PROOF TC1 (proof of the 1st termination condition)
[A1] r = (∀k:0≤k<i:a[k]=0)
[A2] 0≤i≤n
[A3] i < n
[G] n-(i+1) < n - i

 END

TC1: I ∧ g ⇒ wp (C:= n - i; body) (n - i < C)

I = (r =(∀k:0≤k<i:a[k]=0)) ∧ 0≤i≤n

Loop with breaks, LN Sec. 9.3

■ There is no break statement in uPL, but we can still look at
the concept behind it, namely to stop a loop earlier because
we know that it has achieved its objective.

6751

i := 0 ; r := true ;
while i<n do {
 r := r ∧ (a[i]=0);
 i++
}

i := 0 ; r := true ;
while i<n ∧ ¬r do {
 r := r ∧ (a[i]=0);
 i++
}

■ How to prove that breaking the loop early is indeed safe?

Loop with breaks

68

{* P *} while g ∧ h do S {* Q *}(2)

{* P *} while g do S {* Q *}(1)

Consider the following loop, which has been proven
correct using an invariant I and a termination metric m:

Suppose now we optimise the loop by adding a “break”
to let it terminate early in some situations

The validity of (1) implies
■ (2) will also terminate
■ (2) will also maintain I’s invariance
■ If g becomes false, (2) will terminate in Q

Loop with breaks

69

I ∧ ¬(g ∧ h) ⇒ Q The only premise which is stronger than what we have is:

Since we’ve already shown that I ∧ ¬g ⇒ Q

all that’s left to prove is I ∧ g ∧ ¬h ⇒ Q

{* g ∧ h ∧ I *} S {* I *}
I ∧ ¬(g ∧ h) ⇒ Q

{* I ∧ g ∧ h *} C:=m; S {* m<C *}
I ∧ g ∧ h ⇒ m > 0 	

{* I *} while (g ∧ h) do S {* Q *}

That is, we need to prove the premises
of this rule:

when we already showed that:

1. {* g ∧ I *} S {* I *}
2. I ∧ ¬(g) ⇒ Q

3. {* I ∧ g *} C:=m; S {* m<C *}
4. I ∧ g ⇒ m > 0

70

Example

54

{* 0≤n *}
i := 0 ; r := true ;
while i<n do {
 r := r ∧ (a[i]=0) ;
 i++
}
{* r = (∀k : 0≤k<n : a[k]=0) *}

∧ r

We have proven the basic form of this program (without the break with ∧ r) before.
Now prove that with the break the program is still correct.

I : (r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n

I ∧ g ∧ ¬h ⇒ Q

(r = (∀k : 0≤k<i: a[k]=0)) ∧ 0≤i≤n ∧ i<n ∧ ¬r

I g ¬h

⇒ r = (∀k : 0≤k<n : a[k]=0)
Q

Dealing with more constructs

LN Section 6.10 -- 6.12

71

Simultaneous assignment

■ Simultaneous assignment x,y := e1,e2 evaluates e1 and
e2 in the current state to values v1 and v2, then assign these
to x and y respectively.

■ Simultaneous substitution Q[e1,e2/x,y] replaces any free
occurrence of x in Q with e1, and y with e2. In particular, we
should not do the substitution of y after the substitution of x,
nor the other way around.

72

x,y := e1,e2

wp (x,y := e1,e2) Q = Q[e1,e2/x,y]

The order of assignment matters

■ The order in which you assign variables matters (you already
know this). E.g. these three have different behaviour:

 wp (x:=x*y; y:=x+y) (x=2 ∧ y=1)

 equivalent to: x=-2 ∧ y=-1

 wp (y:=x+y; x:=x*y) (x=2 ∧ y=1)

 equivalent to: x=2 ∧ y=-1

 wp (x,y := x*y, x+y) (x=2 ∧ y=1)

 which has no integer solution.

73

 = x*y=2 ∧ x*y+y=1

= x(x+y)=2 ∧ x+y=1

 = x*y=2 ∧ x+y=1

Assignment into an array

■ Recall :

	 	

■ Can we extend the rule to a[e1] := e2?
■ Let’s try and see:
	 	

74

{* y = 10 *} a[i] := y {* a[i] = 10 *}

{* a[0] = 10 *} a[i] := y {* a[0] =10 *}

(valid pre-cond)

(not a valid pre-cond)

wp (x:=e) Q = Q[e/x]

{* (i=0 → y | a[0]) = 10 *} Fix :

(c → e1 | e2)
=

if c then e1 else e2

The formalism

■ Let a be an array. Introduce this notation to mean the same
array as a, except its i-th element, which is e:

	
■ Formally defined via this equation:

■ Treat array assignments like a[i] := e as the assignment

	 	 	 a := a(i repby e)
This has the same effect, but now we can safely use the old wp
rule for assignment.

75

 a (i repby e)

a(i repby e)[k] = (i=k → e | a[k])

Example

■ Let’s first calculate the wp

76

{* a[k] = 0 *}

a[i]:=1 // a := a(i repby 1)

{* a(i repby 1)[k] = 0 *}

{* (i=k → 1 | a[k]) = 0 *}

a[k]:=0 // a := a(k repby 0)

{* (i=k → 1 | a(k repby 0)[k]) = 0 *}

{* (i=k → 1 | 0) = 0 *}

// wp

// def. repby

// wp

// def. repby

■ Prove: {* i≠k *} a[k]:= 0 ; a[i]:=1 {* a[k] = 0 *}

■ Now we need to prove that i≠k implies the wp.

Example

77

Example

78

Next up

■ The semantics of program calls

■ How to find loop invariants

■ Tail recursion and loops

■ Using program calls

79

Reducing a program spec to a statement spec

■ So far, we only looked Hoare logic at the statement level

■ Let’s now look at the program level

■ How can we show that a specification of a program P is
correct?

80

{* R *} P(x : int, …) body {* Q *}

Reducing a program spec to a statement spec

■ uPl supports simple program definitions
■ program name: P
■ formals parameters (more about these later): x, y, z, …
■ sequence of statements: S1; S2; S3; …
■ a single return statement at the end (optional)

81

 P(x, y, z, …) { S1; S2; S3; …; return e} ;

Reducing a program spec to a statement spec

■ Consider the program below with the given specification:

■ We first need to reduce such a program-level specification to a
specification in terms of its body.

■ Such reduction raises several issues:

❑ What is the logic of a return statement ?

❑ Should x in the post condition refer to its initial or final value?

❑ How to refer to the old value of a variable?

82

{* x > 0 *} P(x) { x++ ; return x } {* return = x+1 *}

Some restrictions imposed on uPL

■ Restrictions imposed on uPL:

❑ the return statement should only appear as the last statement in
the program.

❑ formulas in the pre- and post-conditions of a program-level
specification of a program P can only refer to P’s parameters or to
auxiliary variables (explained later).

❑ parameters are either passed by value, or passed by copy-restore.
In particular uPL does not allow references/pointers to be passed to
a program.

83

Pass by copy-restore

■ Arrays are by default passed by copy-restore. A parameter
with OUT marker is passed by copy-restore.

■ Example:

 P(OUT x, OUT y) { x := true ; y := false }

■ The behaviour of a call e.g. P(a,b) is as follows:

The values of a and b are copied to P’s local variables x and y.
The the body of P is executed. Then the final values of x and y
are copied to a and b, in that order.

84

Pass by copy-restore, why?
■ Why not pass-by-reference?

■ this could create aliases (different variables pointing to the same data-
cell). This complicates the logic of assignment. Recall this logic:

This assignment will now also affect the meaning of x’s aliases! The
above logic is too simplistic to handle this.

■ In this course we want to avoid this complication, to focus more on the
basic Hoare logic.

■ Pass-by-copy-restore still allows us to simulate programs with side effect,
which is an interesting class to consider.

85

{* P *} x:= e {* Q *} = P ⇒ Q[e/x]

Meaning of variables in the post-condition

■ If y is a pass-by-copy-restore parameter, in the post-condition
it refers to its final value. Example:

■ If x is a pass-by-value parameter, in the post-condition it refers
to its initial value. Example:

86

{* true *}P(x, OUT y){y := x; x:=0} {* y = x *}

{* true *} P(OUT y) { y := 1 } {* y > 0 *}

Example of the reduction

■ Consider again the previous example. To reduce the
specification to the statement level we will do the following
transformation:

87

{* x > 0 *} P(x:int){ x++ ; return x } {* return = x+1 *}

{* x > 0 *} {* return = X+1 *}x++;return := xX:=x ;

Introduce auxiliary variable(s)
to remember the initial value of

the parameters,

Replace pass-by-value
parameters with reference to

their initial values.

How to refer to parameters’ old value?

■ Consider a program P(OUT x) that increases the value of x
by one. How to write a specification of this P? Again, we will
use an auxiliary variable to remember x’s old value:

88

{* true *}
 X:=x; P(OUT x){x := x+1}
{* x = X+1 *}

Here, X is an auxiliary variable. It is
not part of the program P. It is
introduced just for the purpose of
expressing P’s specification.

{* true *} X:=x; x := x+1 {* x = X+1 *} The corresponding statement-
level specification.

