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Plan

• Partitioning based testing (A&O Ch 4/2nd Ed 
Ch. 6).

• Model based testing
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Note: black box testing is an important concept. For example, system level testing is often done in a
black box setup. In this lecture we will discuss two important techniques that are commonly used in such
a setup. The first one, partition based testing, is discussed in length in A&O. However, the second one,
model based testing (MBT), is only lightly touched in A&O. This lecture will introduce you to some basic
concepts of MBT. For a more practical exposition on MBT you can look at e.g. Practical Model-Based
Testing by Utting - Lageard (UU students can access it for free from Scienc Direct,
https://www.sciencedirect.com/science/book/9780123725011)

https://www.sciencedirect.com/science/book/9780123725011


White box testing

Testing is “white box testing” if you have knowledge of 
the source code of the target program to help you 

designing the tests, and your tests have in principle 
access to all the program’s variables so that they can 

inspect them if they are in the correct state.

• Compare this with Def 1.26 A&O (2nd Ed. See p 26).
• White box setup is common at the unit-testing level.
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Black box testing

Testing is ”black box testing” if you do not assume full knowledge 
of the inner working of the target program. Usually this also 

entails that your tests have only limited access to the program 
state to inspect its correctness.

• Compare with Def 1.25 in A&O (2nd Ed. See p26).
• Note that although we may have full access to the source code, at the system level 

we may choose not to use this knowledge because it becomes to complicated to 
comprehend.

Black box testing is common at the system-testing level. We will 
discuss two approaches : (1) Partition-based testing, Ch 4 (2nd ed. 
Ch. 6) and (2) Model-based testing.
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Partition-based testing

• Premise: 

The input space of a program can be partitioned into 
“equivalence classes”, such that inputs from the same 

partition/equivalence-class lead to the “same kind” of behavior. 

• It then makes sense to require that every partition should be 
tested at least once.

• Even without source code, we can often propose a reasonable 
partitioning.
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Recall this example...

Let’s now try to come up with test cases for this function 
from the black box perspective.
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Enum TriType { Isosceles, Equilateral, Scalene }

TryType triangle(Float a, Float b, Float c) { ... } 

If a, b, c represent the sides of a triangle, this 
methods determines the type of the triangle.



Partitioning triangle()’s domain
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ISOSCELES

EQUIDISTANCE
SCALENE

NON TRIANGLE

input domain of triangle

This suggests 4 test-cases, one for every partition.



Boundary value test

Errors often lurk in the “boundaries”  between 
partitions à test values on and around the boundaries.

8

ISOLECES

EQUIDISTANCE
SCALENE

NON TRIANGLE

triangle(1,2,3)

triangle(1,2,2.999)

Examples:



int incomeTax(int income, int age, int children)

Example 2
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Fragments from its informal specification: the method
calculates income tax:
• Income below 10K is not taxed.
• A person under 18y or above 70y is not taxed, as long as

the income is below 50K.
• Tax reduction applies, linear to the number of children

the person has.

This method has a more complex input space than the 
“triangle” example.



Consider the following partitioning

• As before, we can try to come up with test cases that would cover every 
partition.

• Note that just 3 test cases can cover all partitions! 

à does not feel very strong. This is because the approach ignores that 
different parameters may ”interact”. E.g. normally when the age<18 the person 
will not be taxed. However, the combination of income≥50k and age<18 will 
trigger its own behavior, namely that the person will be taxed anyway.
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<10k

[10k..50k)

≥50k

<18

[18..70]

>70

income age

X

The input domain of incomeTax(..)

0

>0

X

#children



Combinatoric testing

• In this example the input domain is spanned by 3 characteristics, 
and there are in total 8 blocks.

• A block combination over the characteristics, e.g. (<10k,<18,0) 
abstractly specifies a test case.

• There are in total 3x3x2 = 18 such combinations of blocks.
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<10k

[10k..50k)

≥50k

<18

[18..70]

>70

income age

X

incomeTax(income,age,#children)

0

>0

X

#children

characteristics

blocks



Combinatoric testing

• Stats: 8 blocks, 18 combinations.
• (C4.24/2nd Ed. C6.2, EACH CHOICE coverage) Each block must 

be tested. 
|T| = (max i: 0£i<k: Bi)  ;  usually too weak.

• (C4.23/2nd Ed. C6.1, ALL coverage) All combinations must be 
tested. 
|T| = (P i: 0£i<k: Bi)  ; does not scale up.
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A

B

C
income age

X X
#children

Let’s name the blocks for 
convenience:

A

B

C

A

B



How about to just cover all pairs?

• Premise: most of the times, only t out of N parameters 
actually influence the behavior. E.g:
– when the income is less than 10k, there will be no tax, regardless the 

age and #children.
– When the income is ≥50k, there will be tax, regardless the age.

• If we speculate on t=2, this leads to “pair-wise” testing: to 
cover all block-pairs over different characteristics.
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A

B

C
income age

X X
#children

A

B

C

A

B



Pair-wise and t-wise testing

• (C4.25/2nd Ed. C6.3, pair-wise coverage). Each pair of blocks (from 
different characteristics) must be tested.

• There are 9+6+6 = 21 pairs to cover. But we can cover them with just 
9 test cases.

• Pair-wise coverage is stronger than EACH CHOICE, and still scalable. 
• (C4.26/2nd Ed. C6.4, t-wise coverage). Generalization of pair-wise.
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A

B

C
income age

X X
#children

A

B

C

A

B



Example: a test set with full pair-wise coverage
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A

B

C
income age

X X
#children

A

B

C

A

B

income age #children

Test-case 1 A A A

Test-case 2 A B B

Test-case 3 A C A

Test-case 4 B A B

Test-case 5 B B A

Test-case 6 B C B

Test-case 7 C A A

Test-case 8 C B B

Test-case 9 C C Does’t matter



PWC, example 2

• Four characteristics, each with two blocks:

• Minimal test set that gives PWC:
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A
B

A
B

A
B

cha1 cha2

tc1 A A

tc2 B B

tc3 A B

tc4 B A

A
B

cha4

B

A

B

B

cha3

A

A

B

B

tc5 A A B A



Consider again this test set

• Despite giving full pwc these tests 
arguably miss some important 
cases:
– tax reduction on mid ages: (B,B,B)
– tax reduction on young parent: (C,A,B)

• Solution: add constraints, but... (see 
next slide).
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A

B

C
income age

X X
#children

A

B

C

A

B

income age #children

tc1 A A A

tc2 A B B

tc3 A C A

tc4 B A B

tc5 B B A

tc6 B C B

tc7 C A A

tc8 C B B

tc9 C C A

<10k

[10k..50k)

≥50k

<18

[18..70]

>70

0

>0



Pair-wise and t-wise testing
• Consider a program P with N characteristics [1..N]. For simplicity, 

suppose each characteristic is split into B number of blocks.
• Total number of pairs = B2*V2 where V2 is the number of subsets 

of size 2 out of N characteristics. So, V2 = 𝑁2 = !!
#!∗ !%# !

• To cover all pairs you need at least B2 number of test cases. 
Expect that it can be more (as in Example 2).

• In general, finding a minimum size test set that gives full t-wise 
coverage is not trivial.

• However, as pointed out before, k-wise testing ignores the 
“semantic” (that some combinations should be included or 
excluded (because they are not sensical)). We can add 
constraints, though this makes the problem of calculating the 
minimum test set even harder. 18



Adding a bit of semantic

(C4.27/2nd Ed. C6.5, Base Choice Coverage, BCC) Decide 
a single base test t0. Make more tests by each time 
removing one block from t0, and forming combinations 
with all remaining blocks (of the same characteristics).

19

A
B
C

P
Q
R

X
Y

Example:  t0 = (B,Q,X),  generates these 
additional test requirements :

(B,Q,Y)
(A,Q,X) (C,Q,X)
(B,P,X)  (B,R,X)

|T|  =  1 +  (Si : 0£i<k : Bi - 1) 



Consider again
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A
B
C

P
Q
R

X
Y

Base test t0 = (B,Q,X),  and these 
additional test, giving full BCC:

(B,Q,Y)
(A,Q,X) (C,Q,X)
(B,P,X)  (B,R,X)

• What if we also need to insist on testing out all 
combinations of (C,P,-) ?

• Proposal: use multiple “base tests”



MBCC
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A
B
C

P
Q
R

X
Y

Decide the “base blocks”: (red)
Choose one or more base tests. They can 
only use base blocks. E.g.:

base test t0 = (B,Q,X)
base test t1 = (C,P,X)

(C4.28/2nd Ed. C6.6, Multiple Base Choices coverage). For each 
characteristic we decide at least one base block. Then decide a 
set of base tests; each only include base blocks. For each base 
test, generate more tests by each time removing one base block, 
and forming combinations with remaining non-base blocks.

|T| at most   M + M*(Si : 0£i<k : Bi - mi)



Example MBCC
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A
B
C

P
Q
R

X
Y

The base blocks are marked red. The base 
tests:

base test t0 = (B,Q,X)
base test t1 = (C,P,X)

We need to add these tests to get full MBCC:
• Varying t0 over non-base blocks:

(A,Q,X), (B,R,X), (B,Q,Y)
• Varying t1 over non-base blocks:

(A,P,X), (C,R,X), (C,P,Y)
• Remove duplicates (there are none above)



Example-2, MBCC
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A
B
C

P
Q
R

X
Y
Z

Red : base blocks
Chosen base tests = (A,P,X),  (A,P,Y)
These produce these additional test 
requirements:

(B,P,X)
(C,P,X)

(B,P,Y)
(C,P,Y)

(A,Q,X)
(A,R,X)

(A,Q,Y)
(A,R,Y)

(A,P,Z)

(A,P,Z)  duplicate

Some properties to note: 
• base-blocks are not cross-combined except as in the base tests.
• non-base blocks are not cross-combined with each other.
• BCC and MBCC will also cover every pair of (base-block,non-base-block).



Overview of partition-based coverage
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EACH 
CHOICE

ALL

t-Wise Multiple Base 
Choice Coverage

Pair-Wise Base Choice 
Coverage

(if the base tests 
cover all 
combinations of 
base blocks)



Models are useful

• A model helps us in understanding the program it
models.

• It can be used as a specification that defines the
correctness of the program.

• It provides guidance on how to systematically test the
program (e.g. if the model is an FSM, we can try to
cover all its prime paths, rather than just randomly
trying different actions).
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A simple FSM modelling some 
program:

a

a

b

q

q



Model based testing (MBT)

• Model-based Testing (MBT) is a way to test guided by a 
model:
– allowing you to define test requirements and coverage 

measure in terms of the model (e.g cover all transitions in 
the model)

– you can even use the model to automatically generate 
tests

• A popular testing technique. Applications:
– Testing Web and Mobile applications
– Testing communication protocols
– Testing embedded systems

• Typically used in a blackbox setup.
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Example: modelling the behavior of a program

• The behavior of a program can be modelled with a finite state 
machine (FSM) (discussed in 2.5.2 A&O, 7.5.2 2nd ed.). 
Example in the next slide. Such a model is also called 
“behavioral model”.

• We will also discuss “extended” FSM.
27

class ItemStore<T> {
Store(T  x)
T   Get()
int Size()

}



An FSM model of ItemStore

28

A finite state machine (FSM) is a graph (I,V,E,∑) that abstractly describes a
program.
• V is a set of nodes representing the program’s states.
• I⊆V is the set of its possible initial states.
• ∑ is a set of “actions” used to label the arrows.
• E is a set of of labelled arrows describing how the program transitions: 
u⟶a v means the FSM can go from the state u to the state v by 
executing the action a.

There are various variations of this; e.g. the actions can be parameterized as in 
Store(x), or we may want to have terminal/exit states.

0 1

Store(x)

Get()

Store(x) ,
Get(),
Size()

Size()



Hierarchical FSM in UML
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UML allows states and transitions to be labelled with additional
information, and statues to be be hierarchically formed from another FSM.



FSM “extracted” from a game
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This FSM is automatically extracted from game plays. It can 
later be used for generating tests.



FSM: drawbacks and alternatives

1. We can’t have a model with infinite states in an
FSM.

2. FSM also blows up if we have many states, e.g. as in 
the previos game example. This makes a model hard 
to comprehend.

3. UML’s uses hierarchical FSM to mitigate the 
problem in (2).

4. Alternatively, we can also use Extended FSM 
(EFSM). 
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Extended FSM (EFSM)
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Store(x)

Size()=1  ➝ Get()

Store(x) , 
Size()>1  ➝ Get()

ItemStore:

To provide more a complete specification we use an extended FSM:
• The FSM has variables or getters V that can be inspected, e.g. Size().
• A transition can now be guarded. The guard specifies when the transition can be 

taken. A guard is a predicate over V e.g. “Size()>1”.
• A transition may also specify a post-condition, which is a predicate over V that 

must hold after the transition is taken.
• Every state is labaled with relevant predicates over V that are expected to hold 

there, as in the above example.
• Note that the addition of V can make the FSM to actually have infinite states.

0
Size() = 0

1
0 < Size() < max

2
Size() = maxSize()=max-1  ➝ Store(x)

Store(x)

Get()



EFSM
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• A sequence of transitions is admissible if (1) it starts in the initial state, (2) 
forms a path in the FSM, and (3) all the guards along the path evaluate to true. 

• The EFSM is correctly implemented by a program F if for every admissible 
sequence 𝜎 of transitions ending in a state s: 
• all predicates decorating s evaluate to true.
• the post-condition of the last transition in 𝜎 is true.

• We should also provide a definition of the expected effect of executing a 
disallowed action. Here, we define the default effect is to remain in the same 
state. 

Store(x)

Size()=1  ➝ Get()

Store(x) , 
Size()>1  ➝ Get()

ItemStore:

0
Size() = 0

1
0 < Size() < max

2
Size() = maxSize()=max-1  ➝ Store(x)

Store(x)

Get()



Model Based Testing with EFSM
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Store(x)

Size()=1  ➝ Get()

Store(x) , 
Size()>1  ➝ Get()

ItemStore:

• We treat a model M as the specification of an actual program F.
• Black box: we can only observe the program’s state through the vars or getters 

in V. 
• A test is a sequence of admissible transitions. The correctness of the 

implementation F is checked by checking the transitions’ post-conditions and 
the predicates that decorate the states along the sequence.

• You can design the tests manually, or generate them from the model.
• You can e.g. aim for full transition coverage, or even prime path coverage.

0
Size() = 0

1
0 < Size() < max

2
Size() = maxSize()=max-1  ➝ Store(x)

Store(x)

Get()



Challenge for automated test generation
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Store(x)

Size()=1  ➝ Get()

Store(x) , 
Size()>1  ➝ Get()

ItemStore:

• To generate a test, the sequence must be admissible. So, all the guards of the 
transitions along the way must be satisfies. This can be non-trivial.

E.g. generating a test that reach state-2 is less trivial.

• If store(x) transitions above are also guarded e.g. requiring that x should be 
contain a valid item-id, generating a test can be hard without knowledge what 
“valid” id is, and how to generate one.

0
Size() = 0

1
0 < Size() < max

2
Size() = maxSize()=max-1  ➝ Store(x)

Store(x)

Get()


