Logic for Program Call
chapter 7

Dealing with program calls

Consider a program with a known specification:
{"P7} Prx) {#Q7}

Suppose another program S that calls Pr. To reason about

S’ correctness we will have to include reasoning about Pr as

well. Options:

o Inline the code of Pr - does not work if we do not have
Pr’'s code, or if Pris recursive.

o We “plug-in” the specification of Pr. How? The following
slides will focus on this approach.

Program call in uPL

For simplicity, uPL only allows a program to be called is as a
“statement” in either of this variant :

pname(actual-params)
var = pname(actual-params)
Calling a program in expression is not allowed, e.g:

y = ifoo(x) +1 ;

Instantiating a specification

Inevitably, when handing a program call we will need to
instantiate the callee’s specification with the used actual
parameters.

Example, consider this specification:

[{* base>0 *} R:=res; incr(base, OUT res) {* res>R+base *}]

Consider a call incr(b+1,b).
Simply replacing the formal with actual parameters can give
a wrong specification on a program that can do side effect:

C [*b+1>0*} B:=b; incr(b+1,b) {* b>B+b+1 *}]

But this is not a valid specification (take b=0 initially). The issue is caused by
confused reference to two different b’s. The red b replaces “base”, which is a pass-
by-value parameter, so in the post-condition it refers to its initial value. The purple
b replaces “res” which is an OUT parameter, so it refers to its final value.

Instantiating a specification

/ To make it safe, we will require that a program-level \
specification can only be instantiated by renaming its
parameters and auxiliary variables, and furthermore they

\ all must be distinct. /

Rule 7.2.1 (for two parameters, with one is an OUT
param):

P} X)Y:=xy; Pr(x, OUTy) {*Q"*}

{* P[X,’y’/x’y] *} X,’Y,:= X,’y, ; Pr(X,’y,) {* Q[X’7y,’x,,Y’/x’y,X7Y] *}

We will handle complex actual parameters via program
transformation (later).

Transtorming the call first

Consider the following program, containing a single call to
another program:

-

_

{" b>0 "7} h

X:=b ; incr(b+1,b)

b= x %)

!

4

(" {*b>0 %) N\

X:=b ;

@b,@r := b+1,b
incr(@b,@r)
b:=@r

_ {*b=x* Y,

To safely instantiate the specification of incr, we first transform the program to an
equivalent one (right). Fresh and distinct variables @b and @r are introduced as
proxies of the actual parameters.

Handling the resulting transformation

" {*b>0%
X:=b ;

incr(@b,@r)
b:=@r

_ {b=x*

@b,@r :=b+1,b

~

/

How to proceed now to
prove the correctness
of this program?

Through wp we can calculate the post-condition for
incr(@b,@r), namely @r = x. But then, how to reason over

the program call itself?

Idea: given the specification of incr, what would be the best
pre-condition that guarantees incr to end up with @r = x ?

“Black box” reduction

(1) The given specification of incr:

G* base>0 *} R:=res; incr(base, OUT res) {* res>R+base *}]

(2) After instantiation with the actual parameters:

[¢ @b>0*} R:=@r: incr(@b,@r) {* @>R+@b *}]

Consider now a call incr(@b,@r) with some arbitrary post
condition Q' to establish. Question: given (2) come up with
the “best” pre-condition for the call so that it will establish Q'.

“Black box” reduction

So, given this (the formula 2 from prev. slide) :

[* @b>0* R:=@r: incr(@b.@r) {* @>R+@b *}]
\ YP J | YQ J

What is the best P’ such that {* P’ *} incr(@b,@r) {* Q" *} ?

|dea:
Require Q = Q' , but to interpret this as a pre-condition
requires us to “detach” references to final values of
variables that receive side effect of incr.
We also need to include P, to make sure that incr will

end up in Q at all.

Constructing P’ :
1.
2.

“Black box” reduction

Given: P Q
[[

|) |
[* @b>0* R:=@r: incr(@b.@r) {* @>R+@b *}]

Q!
In our example, the P’ to construct is for: —

[{"P"} incr(@b @r) {"@r#x7}]

We need Q=>Q’
Replace occurrences of out @ (1)

parameters with fresh variables
to detach them. @r>R+@b = @r#x

Replace occurrences of @ 2)
auxiliary variables representing
initial values with the variables [@b>0 A @Qr@r+@b = @r =X)
they represent.

We also need to pre-condition P. (3)

10

Back to the problem

-

* b>0 *} @) A
* b+1>0 N @r'>b+b+1 = @r=b *}
X:=b :

{* b+1>0 N\ @r'>b+b+1 = @r =#x *}

@b,@r =b+1b

{* @b>0 \ @r'>@r+@b = @r #x *}

incr(@b,@r)

{" @r=x7}| (by calculating wp)

b:=@r

b= x %)

—©

(by calculating wp)

(by calculating wp)

(by black box reduction we did in
the previous slide)

The calculation produces (3)
as a sufficient pre-condition for
(2). The correctness of the
program can be proven by
proving the implication (1) =

(3).

11

Black Box Rule

Formally Rule 7.2.2 (for two parameters, with y being an

OUT param):

-

P*} XY :=xy;Pr(x,OUTy) {*Q*

_ VPAQ=Q) [yl IxyX Y] ") Prxy) Q7

where y’ must be a fresh variable.

Notice:

o Occurrences of OUT param/var in Q is replaced by fresh variables.

o Occurrences of X and Y (initial values of the params) are replaced by x
and y (the vars they represent).

12

Black Box Rule

Let X be a vector of distinct parameter names, and similarly
X be a vector of distinct (auxiliary) variables.

Rule 7.2.2, general form:

UP* X=x:Pr(x) {"Q7

A (e = CORsiRped) T) e

where X'/Ix is a substitution that replaces out-params with
fresh variables.

13

“Functional” box

Calls to a program that behaves functionally can be
handled more easily via Rules 7.3.2. Let x be a vector of
(distinct) formal parameters and d be a vector of actual
parameters (which can be complex):

{*P*} Pr(x) {*return=e *}

| {"PlUXIARIEN]*} | y:=Pr(@)| {* R*)

where e’ = emm —
See this as wp of the assignmenty ;= ¢’

all parameters are assumed to be passed-by-val.

14

Recursion

Let Pr(int n,x) be a program that is recursive over n. Rule
7.4.1: a (simplified) induction rule to handle recursion:

/P =n>0 v

{* PN\ n=07*} Pr(n,x) {* Q7}

({* PAn<K*} Pr(n,x) {*Q*}
implies
{*PA n=K ANK>0"*} Pr(n,x) {*Q"} |

\ P* Pr(nx) {¥Q *} /

Some details omitted; see LN.

Rule 7.4.2 provides a simplified form to handle recursive programs that behave
functionally.

15

Example

As a simple example, consider the following recursive
program that simply returns O if given a integer n > 0. Let's
try to prove its specification:

{*n>0"7}

P(intn) {if n =0 then return n else return P(n-1) }

{* return =0 *}

The base case is not difficult. Let’'s see the induction case.

16

The induction case

The induction case boils down to proving the following, after
reducing the spec to P’s body:

{*n>=0A n=K N\ K>0*}
if n=0 then return:=n else ,return := P(n-1)
{* return =0 *}

By applying the functional Black Box rule 7.3.2, and using the induction
hypothesis we can calculate the needed pre-condition for this call,

namely:
n-1>0 A n-1< KA 0=0

Then we can calculate the wp of the if-then-else, and finish the
proof.

17

