
Logic for Program Call
chapter 7



Dealing with program calls

n Consider a program with a known specification:

{* P *}  Pr(x)  {* Q *}

n Suppose another program S that calls Pr. To reason about 
S’ correctness we will have to include reasoning about Pr as 
well. Options:
q Inline the code of Pr à does not work if we do not have 

Pr’s code, or if Pr is recursive.
q We “plug-in” the specification of Pr. How? The following 

slides will focus on this approach.

2



Program call in uPL

n For simplicity, uPL only allows a program to be called is as a 
“statement” in either of this variant :

pname(actual-params)

var :=  pname(actual-params)

Calling a program in expression is not allowed, e.g:

y := ifoo(x) +1 ;

3



Instantiating a specification

n Inevitably, when handing a program call we will need to 
instantiate the callee’s specification with the used actual 
parameters.

n Example, consider this specification:

Consider a call incr(b+1,b).
Simply replacing the formal with actual parameters can give 
a wrong specification on a program that can do side effect:
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{* base>0 *}    R:=res; incr(base, OUT res)   {* res>R+base *}

But this is not a valid specification (take b=0 initially).  The issue is caused by 
confused reference to two different  b’s. The red b replaces “base”, which is a pass-
by-value parameter, so in the post-condition it refers to its initial value. The purple 
b replaces “res” which is an OUT parameter, so it refers to its final value.

{* b+1>0 *}    B:=b; incr(b+1,b)   {* b>B+b+1 *}



Instantiating a specification

To make it safe, we will require that a program-level 
specification can only be instantiated by renaming its 

parameters and auxiliary variables, and furthermore they 
all must be distinct.

n Rule 7.2.1 (for two parameters, with one is an OUT 
param):

n We will handle complex actual parameters via program 
transformation (later).
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{* P *}   X,Y:=x,y ;  Pr(x, OUT y)   {* Q *}
------------------------------------------------------------------------------------
{* P[x’,y’/x,y] *}  X’,Y’:= x’,y’ ; Pr(x’,y’)  {* Q[x’,y’,X’,Y’/x,y,X,Y] *} 



Transforming the call first

Consider the following program, containing a single call to 
another program:

To safely instantiate the specification of incr, we first transform the program to an 
equivalent one (right). Fresh and distinct variables @b and @r are introduced as 

proxies of the actual parameters.
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{* b>0 *}

x:=b ; incr(b+1,b)       

{* b ¹ x *}

{* b>0 *}

x:=b ;
@b,@r := b+1,b
incr(@b,@r)
b := @r

{* b ¹ x *}



Handling the resulting transformation

n Through wp we can calculate the post-condition for 
incr(@b,@r), namely @r ¹ x. But then, how to reason over 
the program call itself?

n Idea: given the specification of incr, what would be the best 
pre-condition that guarantees incr to end up with @r ¹ x ?
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{* b>0 *}

x:=b ;
@b,@r := b+1,b
incr(@b,@r)
b := @r

{* b ¹ x *}

How to proceed now to 
prove the correctness 
of this program? 



“Black box” reduction

n (1) The given specification of incr:

n (2) After instantiation with the actual parameters:

n Consider now a call incr(@b,@r) with some arbitrary post 
condition Q’ to establish. Question: given (2) come up with 
the “best” pre-condition for the call so that it will establish Q’.
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{* base>0 *}    R:=res; incr(base, OUT res)   {* res>R+base *}

{* @b>0 *}    R:=@r; incr(@b,@r)   {* @r>R+@b *}



“Black box” reduction

n So, given this (the formula 2 from prev. slide) :

n What is the best P’ such that {* P’ *} incr(@b,@r) {* Q’ *} ?

Idea:

n Require Q ⇒ Q’ , but to interpret this as a pre-condition 

requires us to “detach” references to final values of 

variables that receive side effect of incr.
n We also need to include P, to make sure that incr will 

end up in Q at all.
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{* @b>0 *}    R:=@r; incr(@b,@r)   {* @r>R+@b *}

P Q



“Black box” reduction

n Given :

n In our example, the P’ to construct is for:
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{* @b>0 *}    R:=@r; incr(@b,@r)   {* @r>R+@b *}

P Q

{* P’ *}     incr(@b,@r)     {* @r ¹ x *}

Q’

@r>R+@b ⇒ @r ¹ x

@r’>@r+@b ⇒ @r’ ¹ x@b>0  /\

(1)

(2)

Constructing P’ :
1. We need Q⇒Q’
2. Replace occurrences of out

parameters with fresh variables 
to detach them. 
Replace occurrences of 
auxiliary variables representing 
initial values with the variables 
they represent.

3. We also need to pre-condition P. (3)



Back to the problem
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{* b>0 *}

x:=b ;

@b,@r := b+1,b

incr(@b,@r)

b := @r

{* b ¹ x *}

{* @r ¹ x *}

{*  @b>0  /\ @r’>@r+@b ⇒ @r’ ¹ x  *}

{*  b+1>0  /\ @r’>b+b+1 ⇒ @r’ ¹ x  *}

{*  b+1>0  /\ @r’>b+b+1 ⇒ @r’ ¹ b  *}

(by calculating wp)

(by black box reduction we did in 
the previous slide)

(by calculating wp)

(by calculating wp)

1
3

The calculation produces (3)
as a sufficient pre-condition for
(2). The correctness of the
program can be proven by
proving the implication (1) ⇒
(3).
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Black Box Rule

n Formally Rule 7.2.2 (for two parameters, with y being an 
OUT param):

{* P *}   X,Y := x,y ; Pr(x,OUT y)   {* Q *}
-----------------------------------------------------------------------

{* P /\ (Q Þ Q’) [y’/y] [x,y/X,Y] *}   Pr(x,y)   {* Q’ *}

where y’ must be a fresh variable.
n Notice:

q Occurrences of OUT param/var in Q is replaced by fresh variables.
q Occurrences of X and Y (initial values of the params) are replaced by x 

and y (the vars they represent). 
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Black Box Rule

n Let x be a vector of distinct parameter names, and similarly 
X be a vector of distinct (auxiliary) variables.

n Rule 7.2.2, general form:

{* P *}   X := x ; Pr(x)   {* Q *}
-----------------------------------------------------------------------

{* P   /\ (Q  Þ Q’)[x’//x][x/X]  *}   Pr(x)   {* Q’ *}

where x’//x is a substitution that replaces out-params with 
fresh variables.
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“Functional” box

n Calls to a program that behaves functionally can be 
handled more easily via Rules 7.3.2. Let x be a vector of 
(distinct) formal parameters and d be a vector of actual 
parameters (which can be complex):

{* P *}   Pr(x)   {* return = e *}
-----------------------------------------------------
{* P[d/x] /\ R[e’/y] *}    y:=Pr(d)   {* R *}

where e’ = e[d/x].

n all parameters are assumed to be passed-by-val.
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See this as wp of  the assignment y := e’

y := e’



Recursion

n Let Pr(int n,x) be a program that is recursive over n. Rule 
7.4.1: a (simplified) induction rule to handle recursion:

P Þ n³0 \\n is bounded below
{* P /\ n=0 *}  Pr(n,x)  {* Q *} \\base case

{* P /\ n<K *}  Pr(n,x)  {* Q *} 
implies
{* P /\ n=K  /\ K>0 *}  Pr(n,x)  {* Q *} \\induct. Case

-------------------------------------------------------------------------------
{* P *}    Pr(n,x)    {* Q  *}

n Some details omitted; see LN. 
n Rule 7.4.2 provides a simplified form to handle recursive programs that behave 

functionally.
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Example

n As a simple example, consider the following recursive 
program that simply returns 0 if given a integer n ³ 0. Let’s 
try to prove its specification:

{* n ³ 0 *}

P(int n) { if n = 0  then return n else return P(n−1) }

{* return = 0 *}

n The base case is not difficult. Let’s see the induction case.
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The induction case

n The induction case boils down to proving the following, after 
reducing the spec to P’s body:

{* n ³ 0 /\ n=K  /\ K>0 *}
if n=0  then return:=n  else return := P(n−1) 

{* return = 0 *}
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By applying the functional Black Box rule 7.3.2, and using the induction 
hypothesis we can calculate the needed pre-condition for this call, 
namely:

n-1³0  /\ n-1< K /\ 0=0

Then we can calculate the wp of the if-then-else, and finish the 
proof.


