
Logic for Program Call
chapter 7

Dealing with program calls

n Consider a program with a known specification:

{* P *} Pr(x) {* Q *}

n Suppose another program S that calls Pr. To reason about
S’ correctness we will have to include reasoning about Pr as
well. Options:
q Inline the code of Pr à does not work if we do not have

Pr’s code, or if Pr is recursive.
q We “plug-in” the specification of Pr. How? The following

slides will focus on this approach.

2

Program call in uPL

n For simplicity, uPL only allows a program to be called is as a
“statement” in either of this variant :

pname(actual-params)

var := pname(actual-params)

Calling a program in expression is not allowed, e.g:

y := ifoo(x) +1 ;

3

Instantiating a specification

n Inevitably, when handing a program call we will need to
instantiate the callee’s specification with the used actual
parameters.

n Example, consider this specification:

Consider a call incr(b+1,b).
Simply replacing the formal with actual parameters can give
a wrong specification on a program that can do side effect:

4

{* base>0 *} R:=res; incr(base, OUT res) {* res>R+base *}

But this is not a valid specification (take b=0 initially). The issue is caused by
confused reference to two different b’s. The red b replaces “base”, which is a pass-
by-value parameter, so in the post-condition it refers to its initial value. The purple
b replaces “res” which is an OUT parameter, so it refers to its final value.

{* b+1>0 *} B:=b; incr(b+1,b) {* b>B+b+1 *}

Instantiating a specification

To make it safe, we will require that a program-level
specification can only be instantiated by renaming its

parameters and auxiliary variables, and furthermore they
all must be distinct.

n Rule 7.2.1 (for two parameters, with one is an OUT
param):

n We will handle complex actual parameters via program
transformation (later).

5

{* P *} X,Y:=x,y ; Pr(x, OUT y) {* Q *}
--
{* P[x’,y’/x,y] *} X’,Y’:= x’,y’ ; Pr(x’,y’) {* Q[x’,y’,X’,Y’/x,y,X,Y] *}

Transforming the call first

Consider the following program, containing a single call to
another program:

To safely instantiate the specification of incr, we first transform the program to an
equivalent one (right). Fresh and distinct variables @b and @r are introduced as

proxies of the actual parameters.

6

{* b>0 *}

x:=b ; incr(b+1,b)

{* b ¹ x *}

{* b>0 *}

x:=b ;
@b,@r := b+1,b
incr(@b,@r)
b := @r

{* b ¹ x *}

Handling the resulting transformation

n Through wp we can calculate the post-condition for
incr(@b,@r), namely @r ¹ x. But then, how to reason over
the program call itself?

n Idea: given the specification of incr, what would be the best
pre-condition that guarantees incr to end up with @r ¹ x ?

7

{* b>0 *}

x:=b ;
@b,@r := b+1,b
incr(@b,@r)
b := @r

{* b ¹ x *}

How to proceed now to
prove the correctness
of this program?

“Black box” reduction

n (1) The given specification of incr:

n (2) After instantiation with the actual parameters:

n Consider now a call incr(@b,@r) with some arbitrary post
condition Q’ to establish. Question: given (2) come up with
the “best” pre-condition for the call so that it will establish Q’.

8

{* base>0 *} R:=res; incr(base, OUT res) {* res>R+base *}

{* @b>0 *} R:=@r; incr(@b,@r) {* @r>R+@b *}

“Black box” reduction

n So, given this (the formula 2 from prev. slide) :

n What is the best P’ such that {* P’ *} incr(@b,@r) {* Q’ *} ?

Idea:

n Require Q ⇒ Q’ , but to interpret this as a pre-condition

requires us to “detach” references to final values of

variables that receive side effect of incr.
n We also need to include P, to make sure that incr will

end up in Q at all.

9

{* @b>0 *} R:=@r; incr(@b,@r) {* @r>R+@b *}

P Q

“Black box” reduction

n Given :

n In our example, the P’ to construct is for:

10

{* @b>0 *} R:=@r; incr(@b,@r) {* @r>R+@b *}

P Q

{* P’ *} incr(@b,@r) {* @r ¹ x *}

Q’

@r>R+@b ⇒ @r ¹ x

@r’>@r+@b ⇒ @r’ ¹ x@b>0 /\

(1)

(2)

Constructing P’ :
1. We need Q⇒Q’
2. Replace occurrences of out

parameters with fresh variables
to detach them.
Replace occurrences of
auxiliary variables representing
initial values with the variables
they represent.

3. We also need to pre-condition P. (3)

Back to the problem

11

{* b>0 *}

x:=b ;

@b,@r := b+1,b

incr(@b,@r)

b := @r

{* b ¹ x *}

{* @r ¹ x *}

{* @b>0 /\ @r’>@r+@b ⇒ @r’ ¹ x *}

{* b+1>0 /\ @r’>b+b+1 ⇒ @r’ ¹ x *}

{* b+1>0 /\ @r’>b+b+1 ⇒ @r’ ¹ b *}

(by calculating wp)

(by black box reduction we did in
the previous slide)

(by calculating wp)

(by calculating wp)

1
3

The calculation produces (3)
as a sufficient pre-condition for
(2). The correctness of the
program can be proven by
proving the implication (1) ⇒
(3).

2

Black Box Rule

n Formally Rule 7.2.2 (for two parameters, with y being an
OUT param):

{* P *} X,Y := x,y ; Pr(x,OUT y) {* Q *}

{* P /\ (Q Þ Q’) [y’/y] [x,y/X,Y] *} Pr(x,y) {* Q’ *}

where y’ must be a fresh variable.
n Notice:

q Occurrences of OUT param/var in Q is replaced by fresh variables.
q Occurrences of X and Y (initial values of the params) are replaced by x

and y (the vars they represent).

12

Black Box Rule

n Let x be a vector of distinct parameter names, and similarly
X be a vector of distinct (auxiliary) variables.

n Rule 7.2.2, general form:

{* P *} X := x ; Pr(x) {* Q *}

{* P /\ (Q Þ Q’)[x’//x][x/X] *} Pr(x) {* Q’ *}

where x’//x is a substitution that replaces out-params with
fresh variables.

13

“Functional” box

n Calls to a program that behaves functionally can be
handled more easily via Rules 7.3.2. Let x be a vector of
(distinct) formal parameters and d be a vector of actual
parameters (which can be complex):

{* P *} Pr(x) {* return = e *}

{* P[d/x] /\ R[e’/y] *} y:=Pr(d) {* R *}

where e’ = e[d/x].

n all parameters are assumed to be passed-by-val.

14

See this as wp of the assignment y := e’

y := e’

Recursion

n Let Pr(int n,x) be a program that is recursive over n. Rule
7.4.1: a (simplified) induction rule to handle recursion:

P Þ n³0 \\n is bounded below
{* P /\ n=0 *} Pr(n,x) {* Q *} \\base case

{* P /\ n<K *} Pr(n,x) {* Q *}
implies
{* P /\ n=K /\ K>0 *} Pr(n,x) {* Q *} \\induct. Case

{* P *} Pr(n,x) {* Q *}

n Some details omitted; see LN.
n Rule 7.4.2 provides a simplified form to handle recursive programs that behave

functionally.
15

Example

n As a simple example, consider the following recursive
program that simply returns 0 if given a integer n ³ 0. Let’s
try to prove its specification:

{* n ³ 0 *}

P(int n) { if n = 0 then return n else return P(n−1) }

{* return = 0 *}

n The base case is not difficult. Let’s see the induction case.

16

The induction case

n The induction case boils down to proving the following, after
reducing the spec to P’s body:

{* n ³ 0 /\ n=K /\ K>0 *}
if n=0 then return:=n else return := P(n−1)

{* return = 0 *}

17

By applying the functional Black Box rule 7.3.2, and using the induction
hypothesis we can calculate the needed pre-condition for this call,
namely:

n-1³0 /\ n-1< K /\ 0=0

Then we can calculate the wp of the if-then-else, and finish the
proof.

